
AIRES
A system for air shower simulations

User’s guide and reference manual

Version 19.04.10

S. J. Sciutto

Departamento de F«ısica and IFLP (CONICET)
Universidad Nacional de La Plata

C. C. 67 - 1900 La Plata
Argentina

sciutto@fisica.unlp.edu.ar

January 23, 2023

A

I

R-shower

Extended

Simulations

iii

iv

AIRES user’s guide and reference manual
Version 19.04.10 (2023)

S. J. Sciutto, La Plata, Argentina.

This manual is part of the AIRES 19.04.10 distribution. The AIRES system is distributed world-
wide as “free software” for all scientists working in educational/research non-profit institutions.
Users from commercial or non-educational institutions must obtain the author’s written permis-
sion before using the software and/or its related documentation.
The present document makes obsolete all the previous versions of the AIRES user’s manual and
reference guide.
NO WARRANTY. The AIRES system is provided in an “as is” basis, without warranty of any
kind, either expressed or implied, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose. The entire risk as to the quality and performance
of the program is with the user. Should the program prove defective, the user assumes the cost
of all necessary servicing, repair or correction. In no event will the AIRES author(s), be liable to
any user for damages, including any general, special, incidental or consequential damages arising
out of the use or inability to use the Simulation System (including, but not limited to, loss of data
or data being rendered inaccurate or losses sustained by the user or third parties or a failure of
the System to operate with any other programs), even if the author(s) have been advised of the
possibility of such damages.
Product and company names mentioned in this manual are trademarks or trade names of their
respective companies.

Summary

The name AIRES (AIR-shower Extended Simulations) identifies a set of programs and subroutines
to simulate particle showers produced after the incidence of high energy cosmic rays on the Earth’s
atmosphere, and to manage and analyze all the related output data.

AIRES provides full space-time particle propagation in a realistic environment, where the char-
acteristics of the atmosphere, the geomagnetic field and the Earth’s curvature are taken into account
adequately. A statistical sampling procedure (the so-called thinning) is used when the number of par-
ticles in the showers is exceedingly large. The thinning algorithms used in AIRES are unbiased, that
is, the statistical sampling never alters the average values of output observables.

The particles taken into account by AIRES in the simulations are: Gammas; electrons; positrons;
muons; taus; pions; kaons; eta, rho, D, Ds, and B mesons; lambda, sigma, xi, and omega baryons;
nucleons; antinucleons; and nuclei up to Z = 36. Electron and muon neutrinos are generated in
certain processes (decays) and accounted for their energy, but not propagated. The primary particle
can be any one of the already mentioned particles, with energy ranging from less than 1 GeV up
to more than 1 ZeV (1021 eV). It is also possible to simulate showers initiated by “special” primary
particles via a call to a user-written module capable of processing the “first interaction” of the primary
and returning a list of standard particles suitable for being processed by AIRES.

Among all the physical processes that may undergo the shower particles, the most important
from the probabilistic point of view are taken into account in the simulations. Such processes are:
(i) Electrodynamical processes: Pair production and electron-positron annihilation, bremsstrahlung
(electrons, positrons and muons), muonic pair production, knock-on electrons (δ rays), Compton and
photoelectric effects, Landau-Pomeranchuk-Migdal (LPM) effect and dielectric suppression. (ii) Un-
stable particle decays, pions and muons, for instance. (iii) Hadronic processes: Inelastic collisions
hadron-nucleus and photon-nucleus, sometimes simulated using an external package which imple-
ments a given hadronic interaction model, like the well-known EPOS, QGSJET or SIBYLL models.
Photonuclear reactions. Nuclear fragmentation, elastic and inelastic. (iv) Propagation of charged par-
ticles: Losses of energy in the medium (ionization), multiple Coulomb scattering and geomagnetic
deflections.

The AIRES simulation system provides a comfortable environment where to perform reliable
simulations: The Input Directive Language (IDL) is a set of simple directives which allow for an
efficient control of the input parameters of the simulation. The AIRES Runner System is a powerful
tool to manage long simulation tasks in UNIX environments, allowing the user to coordinate several

v

vi SUMMARY

tasks running concurrently, controlling the evolution of a given job while running, etc. The AIRES
summary program processes the internal dump files generated by the main simulation program, and
allows to obtain data related with physical observables either after or during the simulations. Finally,
the AIRES object library provides a series of auxiliary routines to process the data generated by the
simulation program, in particular the data contained in the compressed output files, the detailed parti-
cle data files containing per-particle information for particles reaching the ground, crossing different
observing levels during their evolution, etc.

The present version of AIRES (19.04.10) represents a new release of the Air Shower Simulation
System where many new technical features have been added to it. In particular, the present version
includes the possibility of installing extensions, additional modules that are incorporated to the main
simulation system that enlarge its capabilities. This is the case of the ZHAireS extension, that allows
to simulate the radio waves emitted during the shower development.

The present version of AIRES (19.04.10) represents a new release of the Air Shower Simulation
System where many new features and algorithm improvements have been added to it. The most
important additions for this new version are summarized in next section Release Notes.

It is worthwhile mentioning that some of the modules that that make up the AIRES simulation
engine have been developed with the help of various colleagues: The routines that simulate the geo-
magnetic deflections, LPM effect and muon bremsstrhlung and pair production were developed with
the help of A. Cillis (La Plata, 1998-2001). The atmospheric model GAMMA was designed and
developed in collaboration with J. C. Moreno (La Plata, 2008-2012). The HQIP preprocessor was
designed and developed in collaboration with J. I. Illana and M. Masip (Universidad de Granada,
Spain, 2010-2014). The updated cross sections for photonuclear interactions have been investigated
in collaboration with C. A. Garc«ıa Canal (La Plata), G. Pancheri (INFN Frascati, Italy), and F. Cornet
and A. Grau (Universidad de Granada, Spain, 2008-2015). Additionally, many of the developments
presented for the current release were performed taking into account users’ suggestions and remarks.
The author is indebted to everybody that have contacted him (a very long list of persons indeed),
either to report a bug or to make a comment on the program.

La Plata, January 2023.

Release notes

We include here a brief summary of the new developments that are included in the current version of
AIRES (19.04.10), as well as a description of the differences with the previous release of the system
(19.04.08).

The number in brackets placed after directive names or library routines indicates the page where
the corresponding directive/routine is described. Example: TaskName (130).

Differences between AIRES 19.04.10 and AIRES 19.04.08

Input Directive Language

The number in brackets placed after directive names indicate the page where the corresponding di-
rective is described.

Directives related to parameters which changed their default values or parameter ranges.

• RLimsFile (126).

Output data and analysis tools

Python interface. All the modules that make the AIRES shared object library can now be called from
a Python environment in s simple way. This feature of AIRES makes it possible, among other
applications, to analyse output from AIRES simulations (even old output files created with
AIRES versions prior to 19.04.10) by means of Python scripts/programs, therefore allowing
Python programmers to take advantage simultaneously of a clear and powerful object-oriented
programming language like Python, and the speed and stability of AIRES library routines that
can fastly scan compressed output files with millions of particle entries. For details read the
file AIRES-Python-README.txt included in the AIRES distribution (see inside the doc di-
rectory).

vii

Contents

Summary v

Release notes vii

1 Introduction 1
1.1 Structure of the main simulation programs . 5
1.2 Getting and installing AIRES . 8

2 General characteristics of AIRES 9
2.1 The environment of an air shower . 9

2.1.1 Coordinate system . 9
2.1.2 Atmosphere . 10
2.1.3 The slant depth and the Earth’s curvature. 15
2.1.4 Range of validity of the “plane Earth” approximation 16
2.1.5 Geomagnetic field . 17

2.2 Air showers and particle physics . 17
2.2.1 Particle codes. 17
2.2.2 Interactions taken into account in the current version of AIRES 18
2.2.3 Processing the interactions . 20
2.2.4 Random number generator . 24

2.3 Statistical sampling of particles: The thinning algorithm 25
2.3.1 Hillas thinning algorithm . 25
2.3.2 AIRES extended thinning algorithm . 26
2.3.3 How does the thinning affect the simulations? 27

3 Steering the simulations 34
3.1 Tasks, processes and runs . 34
3.2 The Input Directive Language (IDL) . 34

3.2.1 A first example . 35
3.2.2 Errors and input checking . 35
3.2.3 Obtaining online help . 37

viii

CONTENTS ix

3.2.4 Physical units . 37
3.2.5 Carrying on . 39

3.3 More on IDL directives . 48
3.3.1 Run control . 48
3.3.2 File directories used by AIRES . 50
3.3.3 Defining the initial conditions . 51
3.3.4 Atmosphere . 54
3.3.5 Geomagnetic field . 56
3.3.6 Statistical sampling control . 58
3.3.7 Output table parameters . 59
3.3.8 Random number generator . 59

3.4 Input parameters for the interaction models 60
3.4.1 External packages . 60
3.4.2 Other control parameters . 62

3.5 Special primary particles . 63
3.5.1 Defining special particles . 63
3.5.2 The external executable modules . 64

4 Managing AIRES output data 69
4.1 Using the summary program AiresSry . 69

4.1.1 The summary file . 70
4.1.2 Exporting data . 71
4.1.3 The task summary script file . 73

4.2 Processing compressed particle data files . 75
4.2.1 Customizing the compressed files . 76
4.2.2 Using the AIRES object library . 86

5 The AIRES Runner System 93
5.1 Checking input files . 93
5.2 Managing simulation tasks . 94

5.2.1 Canceling tasks and/or stopping the simulations 95
5.2.2 Performing custom operations between processes 95

5.3 Concurrent tasks . 97
5.4 Some commands to manage dump file data 98

5.4.1 Converting IDF binary files to ADF portable format. 99

A Installing AIRES and maintaining existing installations 101
A.1 Installing AIRES 19.04.10 . 101

A.1.1 Installation procedure step by step . 102
A.2 Recompiling the simulation programs . 104

x CONTENTS

B IDL reference manual 106
B.1 List of IDL directives. 107

C Output data table index 132

D The AIRES object library 140
D.1 C/C++ interface . 140
D.2 List of most frequently used library modules. 141

References 216

Index 219

List of Figures

1.1 Structure of AIRES simulation program . 7

2.1 AIRES coordinate system . 9
2.2 Mean molecular weight of the atmosphere versus altitude 11
2.3 Density of air versus altitude . 12
2.4 Vertical atmospheric depth versus altitude . 13
2.5 Vertical atmospheric depth for altitudes larger than 10 km 14
2.6 Hadronic mean free paths . 22
2.7 Effect of the thinning on the longitudinal development of charged particles 28
2.8 Effect of the thinning on the e+e− lateral distribution 29
2.9 Effect of the thinning on the µ+µ− lateral distribution 30
2.10 AIRES thinning algorithm and e+e− lateral distribution 31
2.11 AIRES thinning algorithm and weight distributions 32
2.12 AIRES thinning algorithm. Processor time requirements 32

3.1 Sample AIRES input . 41
3.2 Sample AIRES terminal output . 46
3.3 A module for special primary particles. 65
3.4 Shower axis-injection point coordinate system . 66

4.1 Sample AIRES TSS file . 74
4.2 Processing compressed data files, an example . 91

xi

List of Tables

1.1 Main characteristics of the AIRES air shower simulation system. 4

2.1 Original Linsley’s model coefficients for the US standard atmosphere 15
2.2 Total shower axis length and slant path versus zenith angle 15
2.3 AIRES particle codes and names . 19
2.4 AIRES particle groups . 20

3.1 Physical units accepted within IDL directives . 38
3.2 Available IDL mathematical operations. 40
3.3 Instructions recognized by AddAtmosModel . 55
3.4 Predefined sites of the AIRES site library . 57

4.1 Fields contained in the “beginning of shower” record of compressed particle files . . 76
4.2 Fields contained in the “end of shower” record of compressed particle files 78
4.3 Fields contained in the “external primary particle” record of compressed particle files 80
4.4 Fields contained in the “special primary trailer record” of compressed particle files . 80
4.5 Fields contained in the particle records of compressed ground particle files 82
4.6 Fields contained in the particle records of compressed longitudinal tracking particle

files . 83
4.7 Particle coding systems supported by AIRES library routines 87

xii

Chapter 1

Introduction

Cosmic rays with energies larger than 100 TeV must be studied –at present– using experimental
devices located on the surface of the Earth. This implies that such kind of cosmic rays cannot be
detected directly; it is necessary instead to measure the products of the atmospheric cascades of
particles initiated by the incident astroparticle. An atmospheric particle shower begins when the
primary cosmic particle interacts with the Earth’s atmosphere. This is, in general, an inelastic nuclear
collision that generates a number of secondary particles. Those particles continue interacting and
generating more secondary particles which in turn interact again similarly as their predecessors. This
multiplication process continues until a maximum is reached. Then the shower attenuates as far as
more and more particles fall below the threshold for further particle production.

A detailed knowledge of the physics involved is thus necessary to interpret adequately the mea-
sured observables and be able to infer the properties of the primary particles. This is a complex
problem involving many aspects: Interactions of high energy particles, properties of the atmosphere
and the geomagnetic field, etc. Computer simulation is one of the most convenient tools to quantita-
tively analyze such particle showers.

In the case of air showers initiated by ultra-high energy astroparticles (E ≥ 1019 eV), the primary
particles have energies that are several orders of magnitude larger than the maximum energies attain-
able in experimental colliders. This means that the models used to rule the behavior of such energetic
particles must necessarily make extrapolations from the data available at much lower energies, and
there is still no definitive agreement about what is the most convenient model to accept among the
several available ones.

The AIRES system1 is a set of programs to simulate such air showers. One of the basic objectives
considered during the development of the software is that of designing the program modularly, in
order to make it easier to switch among the different models that are available, without having to get
attached to a particular one.

Several simulation programs that were developed in the past were studied in detail in order to gain
experience and improve the new design. Among such programs, the MOCCA code created by A. M.

1AIRES is an acronym for AIR-shower Extended Simulations.

1

2 CHAPTER 1. INTRODUCTION

Hillas [1] has been extensively used as the primary reference when developing the first version of
AIRES [2] released in May 1997. Needless to say, the present version of AIRES (19.04.10), released
more that 20 years after the first one (1.2.0) does include modifications, sometimes massive, of the
original algorithms, and in consequence both programs are no longer equivalent.

Another characteristic of ultra-high energy simulations that was taken into account when develop-
ing AIRES is the large number of particles involved. For example, a 1020 eV shower contains about
1011 secondary particles. From the computational point of view, this fact has two main consequences
that were specially considered at the moment of designing AIRES: (i) With present day comput-
ers, it is virtually impossible to follow all the generated particles, and therefore a suitable sampling
technique must be used to reduce the number of particles actually simulated. The so-called thin-
ning algorithm introduced by Hillas [4] or the sampling algorithm of Kobal, Filipčič and Zavrtanik
[5] represent examples of such sampling methods. (ii) The simulation algorithm is CPU intensive,
and therefore it is necessary to develop a series of special procedures that will provide an adequate
environment to process computationally long tasks.

There are many quantities that define the initial or environmental conditions for an air shower,
for example, the identity of the primary particle and its energy, the position of the ground surface,
the minimum energy a particle must have to be taken into account in the simulation, the intensity and
orientation of the geomagnetic field, etc. Additionally, it is possible to define many observables that
are useful to characterize the particle shower, namely, longitudinal and lateral distribution of particles,
energy distributions, position of the shower maximum and so on.

A comfortable environment is provided by AIRES to manage all the input and output data: The
Input Directive Language (IDL) is a set of human-readable input directives that allow the user to ef-
ficiently steer the simulations. The AIRES summary program and the AIRES object library represent
a set of tools to manage the output data after the simulations are finished, and even during them,
allowing to control their evolution. Data associated with particles reaching ground or crossing prede-
termined observing levels can be recorded into compressed output files. A special data compression
procedure is used to reduce as much as possible the size of the files, which tends to be very large in
certain circumstances. The compressed files can be processed with the help of some auxiliary routines
that are included in the AIRES library. The machine and operating system used to generate such files
may be different that the ones used to read them.

The particles taken into account by AIRES in the simulations are: Gammas; electrons; positrons;
taus; muons; pions; kaons; eta, rho, D, Ds, and B mesons; lambda, sigma; xi, and omega baryons;
nucleons; antinucleons; and nuclei up to Z = 36. Electron and muon neutrinos are generated in
certain processes (decays) and accounted for their energy, but not propagated. The primary particle
can be any one of the already mentioned particles, with energy ranging from less than 1 GeV up
to more than 1 ZeV (1021 eV). It is also possible to simulate showers initiated by “special” primary
particles via a call to a user-written module capable of processing the “first interaction” of the primary
and returning a list of standard particles suitable for being processed by AIRES. A detailed description
on how to define and use special primaries is placed in section 3.5.

Among all the physical processes that may undergo the shower particles, the most important

CHAPTER 1. INTRODUCTION 3

from the probabilistic point of view are taken into account in the simulations. Such processes are:
(i) Electrodynamical processes: Pair production and electron-positron annihilation, bremsstrahlung
(electrons, positrons and muons), muonic pair production, knock-on electrons (δ rays), Compton
and photoelectric effects, Landau-Pomeranchuk-Migdal (LPM) effect and dielectric suppression. (ii)
Unstable particle decays, pions and muons, for instance. (iii) Hadronic processes: Inelastic collisions
hadron-nucleus and photon-nucleus, generally simulated using an external package which implements
a given hadronic interaction model like the well-known EPOS [6], QGSJET [7], or SIBYLL [10]
models; or by a built-in algorithm called extended Hillas splitting algorithm (EHSA). Photonuclear
reactions. Nuclear fragmentation, elastic and inelastic. (iv) Propagation of charged particles: Losses
of energy in the medium (ionization), multiple Coulomb scattering and geomagnetic deflections.

All the general characteristics of AIRES and the physics involved in air shower simulations are
summarized in table 1.1; they are described in more detail in chapter 2.

AIRES is completely written in standard FORTRAN (using a few extensions that are, to the best
of our knowledge, accepted by all FORTRAN compilers). The complete AIRES 19.04.10 source
code, which includes the EPOS LHC [6], EPOS 1.99 [6], QGSJET-II-03 [8], QGSJET-II-04 [7],
SIBYLL 2.3c [10], SIBYLL 2.3 [11], and SIBYLL 2.1 [12] hadronic collisions packages, the IGRF
[15] routines to evaluate geomagnetic data and Netlib/minpack/lmder nonlinear least squares fitting
package [16], consists of more than 2000 routines, adding up to more than 300,000 source lines
extensively commented.

In the present version, the AIRES simulation system consists of the following:

• The main air shower simulation programs:

– AiresEPLHC and AiresEP199;

– AiresQIIr04 and AiresQIIr03;

– AiresS23, AiresS23c, and AiresS21;

containing the interfaces with the hadronic collision packages EPOS LHC [6], EPOS 1.99 [6],
QGSJET-II-04 [7], QGSJET-II-03 [8], SIBYLL 2.3 [11], SIBYLL 2.3c [10], and SIBYLL 2.1
[12], respectively. The default simulation program, Aires, is equivalent to AiresS23.

• The summary program (AiresSry) designed to process a part of the data generated by the
simulation programs, allowing the user to analyze the results of the simulation after completing
it, or even while it is being run.

• The IDF to ADF file format converting program AiresIDF2ADF.

• A library of utilities to help the user to process the compressed output data files generated by
the simulation program, write external modules to process special primaries, etc. In LINUX
environments this library is implemented as an object library called libAires.a, or a shared
object library called libAires.so.

4 CHAPTER 1. INTRODUCTION

Propagated particles Gammas. Leptons: e±, µ±, τ±.
Mesons: π0, π±; η, K0

L,S , K±, ρ0, ρ±, D0, D±, D±
s , B0, B±.

Baryons: p, p̄, n, n̄, Λ, Λc, Σ0, Σ±, Ξ0, Ξ−, Ω−.
Nuclei up to Z = 36.
Neutrinos are generated (in decays) and accounted for their number and
energy, but not propagated.

Primary particles All propagated particles can be injected as primary particles.
Multiple and/or “exotic” primaries can be injected using the special pri-
mary feature.

Primary energy range From 500 MeV to 3 ZeV (3× 1021 eV).

Geometry and environment Incidence angles from vertical to horizontal showers.
The Earth’s curvature is taken into account for all inclinations.
Realistic atmosphere.
Geomagnetic deflections: The geomagnetic field can be calculated us-
ing the IGRF model [15].

Propagation (general) Medium energy losses (ionization).
Scattering of all charged particles including corrections for finite nu-
clear size.
Geomagnetic deflections.

Propagation: Electrons and
gammas

Compton and photoelectric effects, e+e− pair production.
Bremsstrahlung, emission of knock-on electrons, and e+ annihilation.
LPM effect, and dielectric suppression.
Photonuclear reactions.

Propagation: Muons Bremsstrahlung and muonic pair production.
Emission of knock-on electrons.
Decay.

Propagation: Hadrons and
nuclei

Hadronic collisions using the EHSA (low energy) and EPOS, QGSJET
or SIBYLL (high energy).
Nuleus-nucleus collisions via EPOS, QGSJET or SIBYLL, or using a
built-in nuclear fragmentation algorithm.
Hadronic cross sections are evaluated from fits to experimental data
(low energy), or to EPOS, QGSJET or SIBYLL predictions (high en-
ergy).
Emission of knock-on electrons.
Decay of unstable hadrons.

Statistical sampling Particles are sampled by means of the Hillas thinning algorithm [4],
extended to allow control of maximum weights.

Main observables Longitudinal development of all particles recorded in up to 510 observ-
ing levels.
Energy deposited in the atmosphere.
Lateral, energy and time distributions at ground level.
Detailed list of particles reaching ground, and/or crossing predeter-
mined observing levels.

Table 1.1. Main characteristics of the AIRES air shower simulation system.

CHAPTER 1. INTRODUCTION 5

• The AIRES runner system: A set of shell scripts to ease working with AIRES in UNIX envi-
ronments.

1.1 Structure of the main simulation programs

An air shower starts when a cosmic particle reaches the Earth’s atmosphere and interacts with it.
In most cases the first interaction is an inelastic collision of the (high energy) primary particle with
an air nucleus. The product of this collision is a set of secondary particles carrying a fraction of
the primary’s energy. These secondaries begin to move through the atmosphere and will eventually
interact similarly as the primary did, generating new sets of secondaries. This multiplication process
continues until a maximum is reached. After that moment the shower begins to attenuate because an
increasing number of secondaries are produced with energies too low for further particle generation.

This phenomenon is simulated in AIRES in the following way:

1. Several data arrays or stacks are defined. Every record within any stacks is a particle entry, and
represents a physical particle. The data contained in every record are related to the characteris-
tics of the corresponding particle: Identity, position, energy, etc.

2. The particles can move inside a volume within the atmosphere where the shower takes place.
This volume is limited by the ground, and injection surfaces, and by vertical planes which limit
the region of interest.

3. Before starting the simulations all the stacks are empty. The first action is to add the first stack
entry, which corresponds to the primary particle. The primary is initially located at the injection
surface, and its downwards direction of motion defines the sower axis.

4. The stack entries are repeatedly processed sequentially. Every particle entry is updated analyz-
ing first all the possible interactions it can have, and evaluating the corresponding probabilities
for each possibility, taking into account the physics involved.

5. Using a stochastic method, the mentioned probabilities are used to select one of the possible
interactions. This selection defines what is going to happen with the corresponding particle at
that moment.

6. The interaction is processed: First the particle is moved a certain distance (which comes out
from the mentioned stochastic method), then the products of the interaction are generated. New
stack entries are appended to the existing lists for every one of the secondary particles that are
created. Depending on the particular interaction that is being processed, the original particle
may survive (the corresponding entry remains in the stack for further processing) or not (the
entry is deleted).

7. When a charged particle is moved, its energy is modified to take into account the energy losses
in the medium (ionization).

6 CHAPTER 1. INTRODUCTION

8. Particle entries can also be removed when one of the following events happens: (a) The energy
of the particle is lower than a certain threshold energy called cut energy. The cut energies may
be different for different particle kinds. (b) The particle reaches ground level. (c) A particle
going upwards reaches the injection surface. (d) A particle with quasi-horizontal motion exits
the region of interest.

9. After having scanned all the stacks, it is checked whether or not there are remaining particle
entries pending further processing. If the answer is positive, then all the stacks are re-scanned
once more; otherwise the simulation of the shower is complete.

The group of algorithms related with interaction selection and processing, as well as calculation
of energy losses is the group of physical algorithms.

The most important air shower observables are those related with statistical distributions of par-
ticle properties. To evaluate such quantities the simulation engine of AIRES also possesses internal
monitoring procedures that constantly check and record particles reaching ground and/or passing
across predetermined observing surfaces located between the ground and injection levels.

From this description, it shows up clearly that the air shower simulation programs consist of
various interacting procedures that operate on a data set with a variable number of records, modifying
its contests, increasing or decreasing its size accordingly with predetermined rules.

It is necessary to do a modular design of such a program to make it more manageable; and this
is particularly relevant for the case of the algorithms related with the physical laws that rule the
interactions where –as mentioned– there are still open problems requiring continuous change and
testing of procedures.

Figure 1.1 contains a schematic representation of the modular structure of the main simulation
programs. Every unit consists of a set of subroutines performing the tasks assigned to the correspond-
ing unit. In general, every unit can be replaced virtually without altering the other ones. In the case of
the external interaction models where complete packages developed by other groups are linked to the
simulation program via a few interface routines, the modularity acquires particular importance since
it makes it possible to easily switch among the various packages available.

The user controls the simulation parameters by means of input directives. The Input Directive
Language (IDL) is a set of human-readable directives than provides a comfortable environment for
task control. After the input data is processed and checked, control is transferred to the program’s
kernel. During the simulations the particles of the cascade are generated and processed by several
packages. The interactions model package contains the “physics” of the problem.

The job control unit is responsible (among other tasks) of updating the internal dump file (IDF).
This file contains all the relevant internal data used during the simulation, and is the key for system
fault tolerant processing since it makes it possible to restart a broken simulation process from the last
update of the IDF.

The kernel interacts also with other modules that generate the output data, namely, log, summary,
and task summary script files, internal dump file –in either binary or ASCII (portable) format– and
compressed output files generated by the monitoring routines and the particle data output unit.

CHAPTER 1. INTRODUCTION 7

Figure 1.1. The structure of AIRES main simulation program.

8 CHAPTER 1. INTRODUCTION

In the current version of AIRES, there are two compressed output files implemented: The ground
particle file and the longitudinal tracking particle file. Records within the ground particle file (longitu-
dinal tracking file) contain data related with particles reaching ground level (passing across observing
levels).

Since the number of data records contained in such files can be enormous, a special compression
mechanism has been developed to reduce file size requirements. The compressing algorithm is part
of the particle data output module. To give an idea of the space needed to store the particle records,
let us consider the case of the ground particle file with its default settings: For each particle reaching
ground and fulfilling certain (user settable) conditions, a 18 byte long record is written. The record
data items are: particle identity, statistical weight, position, time of arrival and direction of motion.
Leading and trailing records are written before and after an individual shower is completely simulated.
Considering, for instance, a “hard” simulation regime where 2 × 1019 eV primary energy showers
(proton or iron) are simulated with 10−7 relative thinning level using the standard Hillas algorithm
(see section 2.3), generate a compressed ground particle file of size less than 11 MB/shower when
storing all the particles whose distance from the shower core is larger than 50 m and less than 12 km.

The green unit named “special primaries” consists basically in a kernel-operated interface with
user-provided external modules capable of generating lists of particles that will be used to initiate a
shower. This feature allows the user to start showers initiated by non-conventional (exotic) primary
particles like neutrinos, for example.

The math and physical data routines are called from several units within the program and provide
many utility calculations. In particular, they contain the atmospheric model (used to account for
the varying density of the Earth’s atmosphere) and the geomagnetic field auxiliary routines that can
evaluate the geomagnetic field in any place around the world.

1.2 Getting and installing AIRES

AIRES is distributed worldwide as “free software” for all scientists working in educational/research
non-profit institutions. Users from commercial or non-educational institutions must obtain the au-
thor’s written permission before using the software.

The present version of AIRES (19.04.10) can be obtained from the World Wide Web, at the
following site:

aires.fisica.unlp.edu.ar

AIRES is distributed in the form of compressed UNIX tar files. The installation is automatic
for LINUX and Mac OS systems. For other operating systems some adaptive work may be needed.
Appendix A (page 101) contains detailed instructions on how to install AIRES and/or maintain an
existing installation.

Chapter 2

General characteristics of AIRES

The aim of this chapter is to introduce the basic concepts needed to adequately define the problem
being considered.

2.1 The environment of an air shower

2.1.1 Coordinate system

The AIRES coordinate system is a Cartesian system whose origin is placed at sea level at a user-
specified geographical location. The xy plane is located horizontally at sea level and the positive
z-axis points upwards. The x-axis points to the “local” magnetic North, that is, the local direction of
the horizontal component of the geomagnetic field (see section 2.1.5 for details). The y-axis points to
the West.

Figure 2.1 shows an schematic representation of the coordinate system used by AIRES. The xy

plane is tangent to the sea level surface, here taken as a spherical surface of radius Re = 6371007 m
[14] centered at the Earth’s center. The ground level, and the injection level, refer to spherical surfaces
concentric to the sea level surface and intersecting the z-axis at z = zg (zg ≥ 0) and z = zi (zi > zg)
respectively.

inputcoord1fig.tex

Figure 2.1. AIRES coordinate system.

The shower axis of a shower with zenith angle Θ is defined as the straight line that passes by
the intersection point between the ground level and the z-axis, and makes an angle Θ with the z-axis
(0 ≤ Θ < 90◦). The azimuth angle Φ is the angle between the horizontal projection of the shower
axis and the x-axis (0 ≤ Φ < 360◦).

In AIRES version 1.2.0, all the spherical surfaces mentioned in the preceding paragraphs were
approximated as planes. This approximation is justified every time the horizontal distances involved
are negligible in comparison with the Earth’s radius, Re. This is the case for showers whose zenith

9

10 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

angle is small, but certainly not for those with large zenith angles, especially for quasi-horizontal
showers.

For AIRES version 1.4.0 or later the curvature of the Earth is taken into account to make it possi-
ble to reliably simulate showers with zenith angles in the full range 0 ≤ Θ < 90◦. Since full spherical
calculations are computationally expensive, an effort was made to optimize the corresponding algo-
rithms. These optimizations are based on two key concepts: (i) Even if a non-vertical shower can start
in a very distant point, most of the shower development takes place relatively near the z-axis where
the “plane Earth” approximation is acceptable. (ii) Many calculations that employ spherical geometry
can be substantially simplified if the coordinate system is temporarily rotated so the involved point
lies near the new z-axis, and plane geometry is used in the rotated system. If necessary, an inverse
rotation is applied to express results in the original coordinate system.

In order to apply the first concept, a zone where the Earth can be acceptably approximated as
plane must be defined. As it will be justified later in this chapter (see section 2.1.4), the Earth’s
spherical shape can be ignored in a conic region region centered at the z-axis, with a varying diameter
ranging from 8 km at sea level to 45 km at an altitude of 100 km.a.s.l. The average limits of that
region (about 22 km diameter) are indicated in figure 2.1.

To fastly perform the rotation operations needed to express coordinates and vector in a temporary
local coordinate system, it results convenient to use a redundant set of coordinates, defined as follows:
Let r be the position vector of a point with coordinates (x, y, z). We define the vertical altitude, zv,
of the point as the minimum distance between the point and the sea level surface. It is straightforward
to demonstrate that

(Re + zv)2 = (Re + zc)2 + ρ2 (2.1)

where ρ2 = x2 + y2 and zc = z denotes the point’s central altitude, an alternative way to express the
z-coordinate which stresses the fact that this coordinate is always measured along the same central
axis. The redundant set of coordinates

(x, y, zc, zv) (2.2)

is used by AIRES to define the position of a point. The difference between zc and zv gives information
about how far from the z-axis is the point, and in the “plane Earth” zone zv is set equal to zc.

This way of taking into account the Earth’s shape in the simulations proved to be accurate enough
when compared with exact procedures while being economic from the computational point of view.

2.1.2 Atmosphere

The Earth’s atmosphere is the medium where the particles of the shower propagate and their evolution
depends strongly on its characteristics. The simulations must therefore be based on realistic models
of the relevant atmospheric quantities.

The atmosphere has been extensively measured and studied during the last decades. As a result,
a variety of models and parameterizations of measured data have been published. Among them, the

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 11

so-called US standard atmosphere [19] is a widely used model based on experimental data1. We
have selected it as a convenient default model to use in AIRES which gives an acceptably realistic
approximation of the average atmosphere.

Besides the default model, AIRES accepts other atmospheric models, including the possibility of
adding user-defined custom models, as explained with more detail in section

An evident characteristic of the atmospheric medium is that of being inhomogeneous. Its density,
for instance, diminishes six orders of magnitude when the altitude above sea level passes from zero
to 100 km, and another additional six orders for the range 100 km to 300 km [20]. This fact is taken
into account in the model we have selected, where most of the relevant observables are regarded as
functions of the altitude above sea level, or vertical altitude, h: The atmosphere is thus a spherically
symmetric “layer” a few hundreds kilometers thick, whose internal radius is the Earth’s radius (6370
km).

For a variety of processes that the particles can undergo during the development of the shower, it
is essential to know the chemical composition as well as the density of the medium they are passing
through [21]. For this reason, we have studied the behavior of these two quantities, especially their
dependence with the vertical altitude.

16

20

24

28

32

0.1 1 10 100

M
 (

g/
m

ol
)

h (km)

28.966

Figure 2.2. Mean molecular
weight of the atmosphere as a
function of the vertical
altitude (US standard
atmosphere [20]). The line is
only to guide the eye.

The chemical composition of the air, as given by the mean molecular weight, remains virtually
unchanged in all the region 0 ≤ h ≤ 90 km, and diminishes progressively for larger values of h.
This clearly shows up in figure 2.2, where the US standard atmosphere mean molecular weight [20]
has been plotted versus the vertical altitude. The constant value M = 28.966 is the mean molecular
weight corresponding to an atomic mixture of 78.47% N, 21.05% O, 0.47% Ar and 0.03% other
elements. The corresponding mean atomic weight (atomic number) is 14.555 (7.265). The ratio
between mean atomic number and weight is 0.499.

On the other hand, the density of the air does change considerably with the vertical altitude, as
shown in figure 2.3. The dots are the US standard atmosphere data, taken from reference [20]. The

1The US standard atmosphere is sometimes referred as the US extension of the ICAO (International Civil Aviation
Organization) standard atmosphere.

12 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

green full line corresponds to Linsley’s parameterization of the US standard atmosphere [22], also
called Linsley’s atmospheric model or Linsley’s model, which effectively reproduces very accurately
the US standard atmosphere data. The isothermal atmosphere

ρ(h) = ρ0 e−gMh/RT (2.3)

was also plotted (dotted red line) for comparison. ρ0 and T match the corresponding US standard
atmosphere values at sea level.

1e-6

1e-3

1.00

0.1 1 10 100

D
en

si
ty

 (
kg

/m
3)

h (km)

I.A.
L.M.
S.A.

Figure 2.3. Density of the air
as a function of the vertical
altitude. The dots represent
the US standard atmosphere
data [20], while the full green
line corresponds to Linsley’s
model [22] and the dashed
red one to the isothermal
atmosphere
ρ(h) = ρ0 e−gMh/RT with
ρ0 = 1.225 kg/m3,
M = 28.966 and T = 288 K.

It is worthwhile mentioning that Linsley’s model is limited to altitudes less than 100 km. Cur-
rently, in AIRES the model has been extended up to hmax ∼ 420 km, approximately; the density
is considered to be zero for h > hmax. This approximation helps very much to simplify different
algorithms used in air shower simulations while being absolutely justified since only affects an atmo-
spheric zone placed much above the region where the air showers take place, which at most extends
up to 50 vertical kilometers above sea level.

For the same reason, the chemical composition of the air can be assumed to be constant in the
full range of non-vanishing density (0 ≤ h ≤ hmax). As shown in figure 2.2, this only affect the very
upper layer of the atmosphere, with altitudes larger than 90 km.

A further approximation that will be made when necessary is to assume that the air is a “pure”
substance made with “air” atoms whose nuclei possess charge Zeff and mass number Aeff . To match
the actual molecular weight, it is necessary to set Zeff = 7.3 and ⟨Zeff/Aeff⟩ = 0.5 [1].

The density of the air is not directly used by the related algorithms: The quantity that naturally
describes the varying density of the atmospheric medium is the so called vertical atmospheric depth,
Xv, defined as follows:

Xv(h) =
∫ ∞

h
ρ(z) dz. (2.4)

The integration path is the vertical line that goes from the given altitude, h, up to infinity. The usual
unit to express Xv is g/cm2. In figures 2.4 and 2.5, Xv(h) (Linsley’s model) is plotted against h.
Notice that Xv(0) ≈ 1000 g/cm2 and Xv(h)→ 0 for h→∞ as expected.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 13

0

100

200

300

400

500

600

700

800

900

1000

0.1 1 10 100

X
(h

)
(g

/c
m

2)

h (km)

Figure 2.4. Vertical atmospheric depth, Xv, versus vertical altitude over sea level, h, accordingly
with Linsley’s model [22].

ρ(h) can be obtained from Xv(h) via

ρ(h) = −dXv(h)
dh

. (2.5)

Linsley’s parameterization of Xv(h) [22], is done as follows: (i) The atmosphere is divided in
L layers. For l = 1, . . . , L layer l starts (ends) at altitude hl (hl+1). It is clear that h1 = 0 and
hL+1 = hmax. (ii) Xv(h) is given by:

Xv(h) =

al + ble

−h/cl hl ≤ h < hl+1, l = 1, . . . , L− 1
aL − bL(h/cL) hL ≤ h < hL+1
0 h ≥ hL+1.

(2.6)

Where the coefficients al, bl and cl, l = 1, . . . , L are adjusted to fit the corresponding experimental
data. The coefficients used in AIRES, which correspond to a model with L = 5 layers, are listed in
table 2.1, and are the ones that come out from a fit to the US standard atmosphere data. The Linsley’s
model prediction for ρ(h) plotted in figure 2.3 was obtained using this coefficient set and equations
(2.6) and (2.5).

14 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

0.0001

0.001

0.01

0.1

1

10

100

10 100

X
(h

)
(g

/c
m

2)

h (km)

Figure 2.5. Same as figure
2.4, but for altitudes larger
than 10 km.

Another important property of Linsley’s parameterization is that Xv(h) can easily be inverted to
obtain h = X−1

v (X) (X > 0): Let Xl = Xv(hl), l = 1, . . . , L, then

h =

 −cl ln
(

X − al

bl

)
Xl+1 < X ≤ Xl, l = 1, . . . , L− 1

cL(aL −X)/bL 0 < X ≤ XL,

(2.7)

where the replacement Xv(hL+1) = 0 has been made.
A quantity related to the vertical depth that appears frequently in air shower calculations is the

slant atmospheric depth, Xs, defined similarly as Xv (equation (2.4)) but using a non-vertical inte-
gration path. In most applications the integration path is a straight line going along the shower axis,
from the given point to infinity. In this case Xs takes the form:

Xs(z) =
∫ ′ ∞

z
ρ(zv) dl, (2.8)

where the prime in the integral indicates that the path is along a non-vertical line and zv is the vertical
altitude defined in equation (2.1).

The integral in equation (2.8) cannot be solved analytically in the general case of an arbitrary
geometry (see page 214). If the Earth’s curvature is not taken into account (plane Earth), then it is
straightforward to prove that

Xs(h) = Xv(h)
cos Θ

, (2.9)

where Θ is the zenith angle of the shower axis (see section 2.1.1). From this equation it comes out
that Xs depends not only on h but also on Θ and the location of the ground surface.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 15

Layer Layer limits (km) al bl cl

l From To (g/cm2) (g/cm2) (m)
1 0 4 −186.5562 1222.6562 9941.8638
2 4 10 −94.9199 1144.9069 8781.5355
3 10 40 0.61289 1305.5948 6361.4304
4 40 100 0.0 540.1778 7721.7016
5 100 ∼113 0.01128292 1 107

Table 2.1. Linsley’s model coefficients for the US standard atmosphere [22]. The number of layers is
L = 5.

Unless otherwise specified, any reference to atmospheric depth, or depth, is assumed to be a
reference to Xv which may also be noted simply X .2

2.1.3 The slant depth and the Earth’s curvature.

Many air shower observables, especially the ground level distributions, depend on the thickness of
the air layer that separates the starting point of an air shower from the ground level. For non-vertical
showers starting at the top of the atmosphere, this thickness is measured in terms of the slant depth
evaluated at ground level, Xs(zg). The plane Earth approximation given by equation (2.9) is usually
employed to evaluate that quantity. However, this approximate equation can give inaccurate estima-
tions for large zenith angles, and in fact it is divergent for Θ = 90◦.

Zenith angle Curved Earth Plane Earth

(deg) length (km) path (g/cm2) length (km) path (g/cm2)

0 110 1036.1 110 1036.1
30 127 1195.9 127 1196.4
45 154 1463.6 156 1465.3
60 215 2065.1 220 2072.2
70 303 3003.7 322 3029.4
80 518 5765.5 633 5966.7
85 757 10571.7 1262 11887.9
89 1083 25919.3 6303 59367.2
90 1189 36479.9 ∞ ∞

Table 2.2. Total shower axis length (m) and slant path (g/cm2) measured from the top of the
atmosphere (110 km.a.s.l) down to sea level, tabulated versus the zenith angle.

To precisely estimate Xs(zg) we have evaluated numerically the integral of equation (2.8) for
various representative cases. In table 2.2 the results corresponding to zg = 0 (ground level located

2Notice that in some publications the symbol X is used to represent the slant depth.

16 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

at sea level) are tabulated for different zenith angles. The top of the atmosphere is located at an
altitude of 110 km.a.s.l, and Linsley’s parameterization is used in the calculations. The respective
data corresponding to the plane Earth model are also tabulated for comparison purposes.

The tabulated quantities indicate that the plane and curved Earth estimations differ in less than
4% for all zenith angles Θ ≤ 80◦, and the differences increase notably as long as the zenith angle
approaches 90◦.

The geometrical length of the shower axis, a, is also tabulated for both models. In the plane Earth
approximation this length is given by

a = zmax − zg

cos Θ
, (2.10)

where zmax is the (vertical) altitude of the top of the atmosphere (110 km in the present case). On the
other hand, if the Earth’s curvature is taken into account, the expression for a becomes

a =
√

(Re + zvmax)2 − (Re + zg)2 sin2 Θ− (Re + zg) cos Θ, (2.11)

where zvmax stands for the vertical altitude of the injection point (110 km). Equation (2.10) is the
Re →∞ limit of equation (2.11).

2.1.4 Range of validity of the “plane Earth” approximation

In section 2.1.1 (page 9) it is specified that the limit of the “plane Earth” zone is located at a certain
distance from the central z-axis. This distance varies linearly with the altitude and goes from 4 km at
sea level up to 22.5 km at 100 km above sea level.

To determine the boundaries of that zone, that is, a region where plane geometry can safely be
used in the involved procedures, the requirement of expressing the vertical depth of a given point
with enough precision was taken into account. The condition actually imposed can be defined in the
following terms: Let d be the horizontal distance of a certain point to the z-axis, and let z and zv be
the point’s central and vertical altitudes. Let

∆X(d) = Xv(zv)−Xv(z). (2.12)

In a plane geometry, ∆X is zero for all d provided z is kept fixed. We can use this quantity to
determine a safe “plane zone” imposing a bound on ∆X . After a series of technical considerations,
too many to be explained in detail here, we concluded that the geometry can be acceptably taken as
plane for all points whose distances to the z-axis are less than dmax defined by the condition3:

∆X(dmax) < 0.25 g/cm2 AND 2 ∆X(dmax) < 1 %×Xv(z). (2.13)

Using equations (2.1) and (2.13), and taking into account that ∆X ∼= (zv− z)ρ(z), it is simple to
obtain estimations for dmax at different altitudes. At sea level, for example, where the vertical depth
is approximately 1030 g/cm2, and the density of the air is 1.22 kg/m3, we obtain

dmax <̃ 5.5 km. (2.14)
3This requirement is more stringent that the one used for AIRES version 1.4.2a or earlier. The original equations [18]

were not adequate in certain particular conditions, namely, quasi-horizontal showers, and were thus modified.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 17

The same calculation for 100 km above sea level yields

dmax <̃ 24 km. (2.15)

The boundaries of used by AIRES (see section 2.1.1) agree with these results.

2.1.5 Geomagnetic field

All charged particles that move near the Earth are deflected by the geomagnetic field. Such deflections
are taken into account in the internal algorithms of AIRES.

The Earth’s magnetic field, B, is described by its strength, F, F = ∥B∥; its inclination, I, defined
as the angle between the local horizontal plane and the field vector; and its declination, D, defined
as the angle between the horizontal component of B, H, and the geographical North (direction of
the local meridian). The angle I is positive when B points downwards and D is positive when H is
inclined towards the East.

Let (Bx, By, Bz) be the Cartesian components of B with respect to the AIRES coordinate system
(section 2.1.1). They can be obtained from the field’s strength and inclination via

Bx = F cos I, By = 0, Bz = −F sin I. (2.16)

By is always zero by construction, since in the AIRES coordinate system the x-axis points to the local
magnetic north, defined as the direction of the H component of the geomagnetic field.

There are two alternatives for specifying the geomagnetic field in AIRES: (i) Manually, entering F,
I and D. (ii) Giving the geographical coordinates, altitude and date of a given event. In the later case,
the magnetic field is evaluated using the International Geomagnetic Reference Field (IGRF) [15], a
widely used model based on experimental data that gives accurate estimations of all the components
of the Earth’s magnetic field.

We are not going to place here any further analysis of the geomagnetic field and its implementation
in an air shower simulation program. The interested reader can consult reference [23] which contains
a detailed description of general aspects of the geomagnetic field and the IGRF, together with a
discussion about the practical implementation of the deflection procedure and an analysis of the effect
of the geomagnetic field on several air shower observables.

2.2 Air showers and particle physics

We are going to describe here how the particles of an air shower are identified and processed and
which interactions are taken into account.

2.2.1 Particle codes.

AIRES recognizes all the particles commonly taken into account in air shower simulations plus ad-
ditional ones included for completeness. Each particle is internally identified by a particle code. It

18 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

is important to notice, however, that user level particle specifications are made by means of particle
names instead of numeric codes.

Table 2.3 lists AIRES particle codes, together with the corresponding particle names and syn-
onyms.

Nuclear codes are set taking into account Z (atomic number), N (number of neutrons) and A =
Z + N (mass number), in a computationally convenient codification formula:

code = 100 + 32 Z + (N − Z + 8), (2.17)

with 0 ≤ N − Z + 8 ≤ 31. Taking 1 ≤ Z ≤ 26 (from hydrogen to iron), this coding system allows
to uniquely identify all known isotopes.

Regarding the names of nuclei, they can be specified in several ways: (i) By their chemical names,
for example Feˆ56 (56 refers to the mass number A, which defaults to the most abundant isotope’s
mass number when not specified). (ii) By special names, as Deuterium for H2 or Iron for Fe56. (iii)
By direct specification of Z, N and/or A, for example NZ 2 2 (He4), ZA 26 54 (Fe54), etc.

In certain cases it may be needed to refer to groups of particles having some properties in common.
There are several particle groups defined in the AIRES system which can be useful in such situations.
The most important groups of particles are listed in table 2.4.

2.2.2 Interactions taken into account in the current version of AIRES

The processes which are most relevant from the probabilistic point of view are taken into account in
AIRES. In the current version (19.04.10), the following interactions are included:

• Electrodynamical processes:

– Pair production and e+e− annihilation.

– Bremsstrahlung (electrons and positrons).

– Muon bremsstrahlung and muonic pair production [24].

– Emission of “knock-on” electrons (δ rays).

– Compton and photoelectric effects.

– LPM effect and dielectric suppression.

• Hadronic processes:

– Inelastic collisions hadron-nucleus.

– Photonuclear reactions.

– Nuclear fragmentation, elastic and inelastic.

• Unstable particle decays.

• Particle propagation:

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 19

Particle Code Name and synonyms Particle Code Name and synonyms
γ 1 Gamma gamma n 30 n Neutron neutron
e+ 2 e+ Positron positron n̄ −30 nbar AntiNeutron antineutron
e− −2 e− Electron electron p 31 p Proton proton
µ+ 3 mu+ Muon+ muon+ p̄ −31 pbar AntiProton antiproton
µ− −3 mu−Muon− muon− Λ 40 Lambda
τ+ 4 tau+ Λ̄ −40 Lambdab
τ− −4 tau− Σ0 41 Sigma0
νe 6 nu(e) Σ̄0 −41 Sigma0b
ν̄e −6 nubar(e) Σ+ 42 Sigma+
νµ 7 nu(m) Σ̄+ −42 Sigma+b
ν̄µ −7 nubar(m) Σ̄− 43 Sigma−b
ντ 8 nu(t) Σ− −43 Sigma−
ν̄τ −8 nubar(t) Ξ0 44 Xi0
π0 10 pi0 Ξ̄0 −44 Xi0b
π+ 11 pi+ Ξ̄− 46 Xi−b
π− −11 pi− Ω̄− 47 Omega−b
K0

S 12 K0S Ω− −47 Omega−
K0

L 13 K0L Λ+
c 48 Lambdac+

K+ 14 K+ Λ−
c −48 Lambdac−

K− −14 K−
D0 16 D0
η 15 eta

D̄0 −16 D0bar
D+ 17 D+
D− −17 D−
D+

s 18 Ds+
D−

s −18 Ds−
B0 20 B0
B̄0 −20 B0bar
B+ 21 B+
B− −21 B-
ρ0 25 rho0
ρ+ 26 rho+
ρ− −26 rho−

Table 2.3. AIRES particle codes and names. The nuclear coding system and nuclear names are
explained in the text.

20 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

Group name and synonyms Particles in the group

NoParticles None Empty group
AllParticles All Universal group containing all particles
AllCharged All charged particles, including all nuclei
MassiveNeutral All non-charged massive particles
Nuclei All nuclei
Hadrons All hadrons
Neutrinos All neutrinos and anti-neutrinos
EM γ, e+, e−

e+− e+, e−

mu+− µ+, µ−

tau+− τ+, τ−

GPion π+, π−, π0

GChPion π+, π−

GKaon K+, K−, K0
S , K0

L

GChKaon K+, K−

GRho ρ+, ρ−, ρ0

GChRho ρ+, ρ−

nppbar n, p, p̄
nnbar n, n̄
Nucnucbr n, n̄, p, p̄

Table 2.4. AIRES particle groups.

– Medium energy losses (ionization).

– Coulomb and multiple scattering.

The hadronic inelastic collisions and photonuclear reactions are processed by means of exter-
nal hadronic interaction models when their energy is above a certain threshold; otherwise they are
calculated using an extension of Hillas’ splitting algorithm [4, 28].

AIRES includes (optionally) links to the well-known external hadronic interaction packages,
EPOS [6], QGSJET [7], and SIBYLL [10].

2.2.3 Processing the interactions

We are going to briefly describe how the different interactions are processed in AIRES. We shall focus
in the computational aspects of these procedures; a more detailed description of the physics involved
in such processes is going to be published elsewhere [29].

First of all it is necessary to express that this description is a general one: The actual algorithms do
include a number of technical details whose complete explanation is beyond the scope of this work,
even if their philosophy is concordant with the scheme here presented.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 21

As mentioned below, in AIRES the particles are stored in arrays (stacks) and processed sequen-
tially. Each particle entry consists of different data items containing the different variables that char-
acterize it: Particle code, energy, position, direction of motion, etc.

For the simulation engine, the shower starts when the primary particle is added to the previously
empty stack. Then the stack processing loop begins.

Let E, r, t, u be respectively the kinetic energy, position, time and direction of motion of a given
particle identified by its particle code kp. When this particle is going to be processed it will suffer
one of several possible interactions Ii, i = 1, . . . , n, n ≥ 1. To fix ideas, let us consider the case of
a positron. The possible interactions, Ii, are: annihilation, interaction with an atom from the medium
and emission of a “knock-on” electron, and emission of a bremsstrahlung photon.

Evaluating the mean free paths

Every interaction Ii is characterized by its cross section, σi, or, equivalently, by its mean free path,
λi. λi and σi are connected via:

λi = mair
σi

, (2.18)

where mair is the mass of an atom of the medium the particle propagates trough, that is, an average
atom of “air” in the case of air showers. The usual units for λi are g/cm2.

The mean free paths do depend on the kind of interaction and on the particle’s instantaneous pa-
rameters. They can be calculated analytically for certain interactions; in other cases they must be
estimated by means of parameterization of experimental data, and this generally requires extrapola-
tions out of the region corresponding to the measurements. A typical example of this situation is the
case of the mean free paths for inelastic collisions particle-nucleus, where “particle” can be proton,
gamma, other nucleus, etc. Such mean free paths depend on the energy of the projectile particle, and
must be calculated for energies well above the maximum energies attainable in collider experiments.

Figure 2.6 contains plots of the mean free paths corresponding to proton-nucleus, pion-nucleus,
kaon-nucleus and Fe-nucleus collisions, plotted as a function of the projectile energy. All the alterna-
tive sets of mean free paths available in AIRES are displayed.

Selecting the particle’s fate

For each interaction i, λi represents the mean path (expressed in “quantity of matter”, that is, g/cm2)
the particle should move before actually suffering the interaction. To evaluate the actual path to a
given interaction, it is necessary to sample the corresponding exponential probability distribution,
Pi(pi) = λ−1

i exp(−pi/λi). Let pi, i = 1, . . . , n the set of values obtained after sampling the
corresponding distributions for all the possible interactions.

The interaction the particle will actually undergo, also called the fate of the particle, is then
selected: It is the interaction j corresponding to the minimum of the pi’s, that is, pj ≤ pi for all i.

22 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

30

40

50

60

70

80

90

10
4

10
6

10
8

10
10

10
12

Lab. energy [GeV]

M
F

P
 [g

/c
m

2
]

Proton

20

30

40

50

60

70

80

90

100

110

120

10
4

10
6

10
8

10
10

10
12

Lab. energy [GeV]

M
F

P
 [g

/c
m

2
]

Pion

40

60

80

100

120

140

10
4

10
6

10
8

10
10

10
12

Lab. energy [GeV]

M
F

P
 [g

/c
m

2
]

Kaon

8

9

10

11

12

13

14

10
5

10
7

10
9

10
11

Nucleus energy [GeV]

M
F

P
 [g

/c
m

2
]

Iron

Figure 2.6. Hadronic mean free paths versus projectile energy (lab system). The solid (blue), and
dashed (red) lines represent, respectively the SIBYLL 2.1 and QGSJET01 models. In the proton, pion
and kaon cases the mean free paths corresponding to the models SIBYLL 1.6 (dot-dashed, green)
and QGSJET99 (dotted, cyan) have been included for comparison. The iron plot includes also the
mean free paths evaluated using the AIRES built-in algorithm in the SIBYLL (dot-dashed, green) and
QGSJET (dotted, cyan) cases.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 23

Moving the particle and processing the selected interaction

After the particle’s fate has been decided, the corresponding interaction begins to be processed. First,
the particle must be advanced the path indicated by pj . It is necessary to convert the path in a geomet-
rical distance, and this depends on the atmospheric model and the particle’s current position. In the
case of charged particles, the advancing procedure also takes care of the ionization energy losses, the
scattering and the geomagnetic field deflection. During this step, the particle’s coordinates, direction
of motion and energy can be altered.

The final step is to process the interaction itself. This generally involves the creation of new par-
ticles (secondaries) which are added to the corresponding stacks and remain waiting to be processed,
and eventually the deletion of the current particle, for example in the case of positron annihilation.

In some cases, it is necessary to apply corrections to the probability distributions used to determine
the particle’s fate. This happens with processes which have rapidly changing cross sections, or by
corrective processes not taken into account in the original selection4. The result of the corrective
action is that of canceling some interactions. In such cases the particle is left unchanged and remains
in the stack for further processing.

Particles arriving to destination

The mechanism so far described is capable of generating and propagating all the secondaries that
come after the first interaction of the primary particle. To let the shower finish it is necessary to
determine when a particle should no more be tracked. In AIRES this corresponds to the case when
one or more of the following conditions hold:

• The particle’s energy is below a given threshold (low energy particles)5.

• The particle’s position is out of the interesting region (lost particles).

• The particle reached the ground level.

It is very simple to show that this is enough to ensure that the simulation of a shower will end in a
finite time.

Particle monitoring

The simulation programs include several monitoring routines that constantly check the status of the
particles being propagated and accumulate data then used to evaluate the different air shower observ-
ables.

The events that are monitored are:
4The Landau-Pomeranchuk-Migdal (LPM) effect [25, 30, 31] is an example of such kind of processes. The LPM effect

implies a reduction of the cross section of e±, γ processes at very high energies. In AIRES it is implemented as a corrective
algorithm whose effect is that of rejecting a fraction of the previously “approved” processes. As a result, the correct cross
sections are statistically preserved.

5Unstable particles are forced to decays.

24 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

• Particles that reach ground level.

• Particles that pass across predetermined observing levels. The observing levels are constant
depth surfaces generally located between the injection and ground levels, and separated by a
constant depth increment ∆Xo: If No is the number of observing levels (No > 1), and X

(1)
o

(X(No)
o) is the vertical depth of the first (last) observing level (X(1)

o < X
(No)
o), then the vertical

depth of the other observing levels is given by

∆Xo = X
(No)
o −X

(1)
o

No − 1

X
(i)
o = X(1)

o + (i− 1)∆Xo, i = 1, . . . , No.

(2.19)

Notice that the first observing level is that of highest altitude.

• Charged particles that move across the air. For such particles the continuous energy losses by
ionization of the medium are evaluated and recorded.

The data collected by the monitoring routines are used to evaluate different kind of observables,
for example:

Longitudinal development of the shower. Tabular data giving the number and energy of particles
crossing each defined observing levels.

Shower Maximum. The data collected for the longitudinal development of all charged particles are
used to estimate the shower maximum, Xmax, that is, the vertical depth of the point where the
number of charged particles reaches its maximum (see section 4.1.1).

Lateral distributions. Frequency distributions recording the number of particles reaching ground,
as a function of their distance to the shower core.

Energy distributions. Energy spectra of the different particles at ground level.

Arrival time distributions. Mean ground level arrival time of different particle kinds as a function
of their distance to the shower core.

All the output coming from the monitoring routines is saved in the form of data tables that can be
easily retrieved by the user (see chapter 4).

2.2.4 Random number generator

AIRES contains many procedures that require using random numbers, the most important example
being the propagating procedures that were described in the preceding paragraphs. Those numbers
are adequately generated by means of a built-in pseudorandom number generator [1], whose source
code is included within the AIRES distribution.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 25

During the early steps of AIRES development, the random number generator was checked with
a series of tests, including uniformity and correlation tests among others. In particular, this pseudo-
random number generator passed the very stringent “random walk” and “block” tests described in
reference [32].

A more detailed description of the different routines associated with the generation of random
numbers can be found in appendix D (page 140).

2.3 Statistical sampling of particles: The thinning algorithm

The number of particles that are produced in an air shower grows significantly when the energy of the
primary increases. For ultra high energy primaries that number can be large enough to make it im-
possible to propagate all the secondaries even if the most powerful computers currently available are
used. The total number of particles in a shower initiated by a 1020 eV proton primary is approximately
1011, being almost impossible even to store the necessary data for such an amount of particles.

The simulations are made possible thanks to a statistical sampling mechanism which allows to
propagate only a small representative fraction of the total number of particles. Statistical weights are
assigned to the sampled particles in order to compensate for the rejected ones. At the beginning of
the simulation, the shower primary is assigned a weight 1.

At the moment of evaluating averages to obtain the physical observables, each particle entry is
weighted with the corresponding statistical weight. For example, the observables coming from the
monitoring routines, listed in section 2.2.3, are evaluated taking into account those statistical weights.
On the other hand, unweighted distributions are simultaneously calculated in the cases of longitudinal,
lateral and energy distributions. They are useful to monitor the behavior of the sampling algorithm.

The sampling algorithm used in AIRES is called thinning algorithm or simply thinning. It is an
extension of the thinning algorithm originally introduced by A. M. Hillas [4, 1], and was implemented
modularly as a procedure which is independent of the units which manage the physical interactions.
The original Hillas algorithm and the AIRES extended thinning algorithm are described in the fol-
lowing sections.

2.3.1 Hillas thinning algorithm

Let us consider the process

A→ B1 B2 . . . Bn, n ≥ 1 (2.20)

where a “primary” particle A generates a set of n secondaries B1, . . . , Bn. Let EA (EBi) be the
energy of A (Bi), and let Eth be a fixed energy called thinning energy.

Before incorporating the secondaries to the simulating processes, the energy EA is compared with
Eth, and then:

26 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

• If EA ≥ Eth, every secondary is analyzed separately, and accepted with probability6

Pi =

1 if EBi ≥ Eth

EBi

Eth
if EBi < Eth

(2.21)

• If EA < Eth, that necessarily means that the “primary” comes from a previous thinning op-
eration. In this case only one of the n secondaries is conserved. It is selected among all the
secondaries with probability

Pi = EBi∑n
j=1 EBj

. (2.22)

This means that once the thinning energy is reached, the number of particles is no more in-
creased.

In both cases the weight of the accepted secondary particles is equal to the weight of particle A

multiplied by the inverse of Pi.
The fact that the statistical weights are set with the inverse of the acceptance probabilities ensures

an unbiased sampling, that is, all the averages evaluated using the weighted particles will not depend
on the thinning energy, and will be identical to the “exact” ones obtained for Eth = 0. Only the
fluctuations are affected by the thinning level: If Eth is close to the primary energy, then the thinning
process begins early in the shower development, and a low number of samples is obtained, with
relatively large and fluctuating weights. On the other hand, low thinning energies lead to larger
samples with less statistical fluctuations.

Processing large samples demands more computer time, so lowering the thinning level makes the
simulation more expensive from the computational point of view.

2.3.2 AIRES extended thinning algorithm

The thinning algorithm of AIRES (19.04.10) includes an additional feature which has proved to be
helpful to diminish statistical weight fluctuations in many cases. This extended algorithm was de-
signed to ensure that all the statistical weights are never larger that a certain positive number Wr > 1,
specified as an external parameter.

The mechanics of the AIRES extended algorithm can be summarized as follows: Let wA be the
weight of particle A, and Wy < Wr/2 be an additional (internal) positive number. Consider the
number of secondaries in the process (2.20).

• If n ≤ 3 then

– If wA > Wy or wA EA/ min(EB1 , . . . , EBn) > Wr then all the secondaries B1, . . . , Bn

are kept.
6The procedure actually used in AIRES implements this step in a technically different way, but retrieving statistically

equivalent results.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 27

– Otherwise the standard Hillas algorithm is used.

• If n > 3 then the standard Hillas algorithm is always used, but if the weight of the single
selected secondary, wB , happens to be larger than Wr, then m copies of the secondary are kept
for further propagation, each one with weight w′

B = wB/m. The integer m is adjusted to
ensure that Wy < w′

B < Wr.

In the AIRES algorithm Wy = Wr/8 and the limit Wr is defined via

Wr = A0 Eth Wf . (2.23)

where A0 is a constant equal to 14 GeV−1 and Wf is an external parameter which can be controlled
by the user and that will be referred as the statistical weight factor.

In order to optimize the sampling algorithm, it is advantageous to define different weight limits
for different particle types. In AIRES two weight factors are defined, W

(EM)
f and W

(H)
f , respectively

used when processing electromagnetic or heavy particles. Parameter W
(H)
f is specified indirectly, by

means of the user-controlled ratio

AEH =
W

(EM)
f

W
(H)
f

(2.24)

that permits evaluating W
(H)
f from W

(EM)
f .

Notice also that Wr depends on the absolute thinning energy Eth. The constant A0 was adjusted
so that A0Eth gives approximately the position of the maximum of the all particles weight distribution
(see below). If Wf →∞ the extended algorithm reduces to the standard Hillas procedure.

It is a simple exercise to show that this extended thinning algorithm is unbiased while ensuring
(by construction) that all the particle weights be smaller than the externally specified maximum value
Wr of equation (2.23).

It is worthwhile mentioning that this procedure is not equal to the thinning algorithm of Kobal,
Filipčič and Zavrtanik [5], even if both algorithms do use the concept of keeping bounded the statis-
tical weights.

2.3.3 How does the thinning affect the simulations?

The effect of the standard thinning on different observables evaluated during the simulations can be
seen in figures 2.7-2.9. All these simulations were done using identical initial conditions: 1019 eV
proton showers with vertical incidence; and considering four different thinning energies, namely,
Eth/Eprim = 10−3, 10−4, 10−6 and 10−7. In all cases the weight limiting mechanism was disabled.

Figure 2.7 (page 28) corresponds to the longitudinal development of all the charged particles, that
is the total number of charged particles crossing the different observing levels, as a function of the
observing levels’ vertical depth.

The plots in this figure show clearly how the statistical fluctuations diminish systematically as
long as the thinning energy is lowered. Compare the plot for 10−3 relative thinning with the smooth

28 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

(a)

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 200 400 600 800 1000

N
o.

 o
f

P
ar

ti
cl

es

X (g/cm2)

(b)

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 200 400 600 800 1000

N
o.

 o
f

P
ar

ti
cl

es

X (g/cm2)

(c)

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 200 400 600 800 1000

N
o.

 o
f

P
ar

ti
cl

es

X (g/cm2)

(d)

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 200 400 600 800 1000

N
o.

 o
f

P
ar

ti
cl

es

X (g/cm2)

Figure 2.7. Effect of the thinning energy on the fluctuations of the number of charged particles
crossing the different observing levels during the shower development. Ten 1019 eV vertical proton
showers were averaged to obtain the data for each thinning level. The plots labeled (a), (b), (c), (d),
correspond to Eth/Eprim = 10−3, 10−4, 10−6 and 10−7, respectively.

plots obtained for the cases 10−6 and/or 10−7. As mentioned, the CPU time required increases each
time the thinning energy is lowered. It is interesting to mention that the simulations done at 10−7

thinning level required some 6300 times more CPU time than the ones done with 10−3 thinning level.
Notice also that the mean positions of the points corresponding to any given depth do not present

any evident dependence with the thinning energy, as expected since the Hillas thinning algorithm is
an unbiased statistical sampling technique. This observation applies also for the plots of figures 2.8
(page 29) and 2.9 (page 30).

The degree of reduction of the fluctuation does depend on the observable considered. In figure 2.8
(page 29) the lateral distribution of ground electrons and positrons is displayed, again for different
thinning levels. It is noticeable the degree of persistence of the noisy fluctuations, which are not
completely eliminated even in the 10−7 relative thinning case.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 29

(a)
0.1

1

10

100

1000

10000

100000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(b)
0.1

1

10

100

1000

10000

100000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(c)
0.1

1

10

100

1000

10000

100000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(d)
0.1

1

10

100

1000

10000

100000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

Figure 2.8. Effect of the thinning energy on the fluctuations of the lateral distribution of electrons
and positrons, in the same conditions as in figure 2.7.

The lateral distribution of muons displayed in figure 2.9 (page 30) reflects another characteristic
of the thinning algorithm. Even if the fluctuations are very large for 10−3 relative thinning level, they
reduce immediately when the thinning is lowered. Compare for example with the plots of figure 2.7
(page 28). To understand the behavior of these distributions it is necessary to recall that the muons
are very penetrating particles, that is, they undergo a very reduced number of interactions before
reaching ground. Therefore their statistical weights remain small since they are products of a few
factors, and this fact is responsible for the low level of fluctuations produced. On the other hand,
ground electrons and positrons most likely come out after a long chain of processes involving many
predecessor particles, and in such circumstances very large statistical weights are unavoidable, and
hence the high level of fluctuations observed in the e+e− distribution of figure 2.8 (page 29).

The AIRES extended thinning algorithm can be useful to reduce such kind of fluctuations. To
illustrate this point let us consider the sample plots displayed in figure 2.10 (page 31).

30 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

(a)
0.1

1

10

100

1000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(b)
0.1

1

10

100

1000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(c)
0.1

1

10

100

1000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

(d)
0.1

1

10

100

1000

50 100 1000

D
en

si
ty

 (
P

ar
ti

cl
es

/m
2)

R (m)

Figure 2.9. Effect of the thinning energy on the fluctuations of the lateral distribution of muons, in
the same conditions as in figure 2.7.

The outstanding characteristic of these plots is the fact that the density fluctuations diminish
when the weight factor (W (EM)

f = W
(H)
f = Wf) is lowered. In the particular cases of Wf = 1 and

Wf = 0.5 the fluctuations corresponding to the 10−5 relative thinning are of the order of the ones
corresponding to the 10−7 (Hillas algorithm) case (yellow band) which were plotted in all cases for
reference.

Looking at the distributions of weights displayed in figure 2.11 (page 32), it is possible to under-
stand the action of the weight limiting mechanism. The distributions labeled “nl” (blue lines) corre-
spond to the Hillas algorithm case (no weight limits). Considering the the distributions of weights
for gammas as a typical case, it is evident that there is a small fraction of particles having weights
up to three orders of magnitude larger than the most probable ones. This rare cases are generally the
cause of many inconvenients that arise when analyzing the data. The plots for finite Wf show clearly
that the distributions present a sharp end (corresponding to the value of Wr). In the case Wf = 1

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 31

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

no limit

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

w
f
 = 40

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

w
f
 = 20

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

w
f
 = 5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

w
f
 = 1

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

0 1000 2000
r (m)

ρ
(m

-2
)

w
f
 = 0.5

Figure 2.10. Effect of the AIRES extended thinning on the fluctuations of the lateral distribution of
electrons and positrons. The plots correspond to 1019 eV proton showers simulated with
Eth/Eprim = 10−5, and different weight factors (W (EM)

f = W
(H)
f = Wf). The yellow bands

() correspond to simulations performed in similar conditions, but using the Hillas algorithm at
10−7 relative level. The width of the bands correspond to the average value plus and minus one RMS
error of the mean.

the gamma distribution ends approximately at the maximum of the “nl” case curve, as expected from
equation (2.23), where the factor A0 is “tuned” to give Wr near the distribution’s maximum when Wf

is equal to 1.
The muon weights are generally smaller than the electromagnetic counterparts (see the discus-

sion of figure 2.9 in page 29). It is therefore necessary to use a smaller weight limit to modify the
corresponding distribution of weights. This is the case of figure 2.11 that corresponds to the case
W

(H)
f = W

(EM)
f /88.

It is worthwhile mentioning that the weight distributions corresponding to other thinning energies

32 CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES

1

10

10
2

10
3

10
4

10
5

0 5 10
log

10
 w

N
 o

f
en

tr
ie

s

γ

1

10

10
2

10
3

10
4

0 5 10
log

10
 w

N
 o

f
en

tr
ie

s

e
+
e

-

1

10

10
2

10
3

10
4

0 2.5 5 7.5
log

10
 w

N
 o

f
en

tr
ie

s

µ+µ-

W
f
 = nl W

f
 = 5 W

f
 = 1 W

f
 = 0.2

Figure 2.11. Effect of the AIRES extended thinning on the distribution of weights for different
particles (gammas, electrons and positrons, and muons). The plots correspond to 2× 1019 eV proton
showers simulated with Eth/Eprim = 10−5, and different weight factors (W (EM)

f = Wf ,

W
(H)
f = W

(EM)
f /88).

10
-1

1

10

10
2

1 10 10
2

10
3

10
-5

10
-6

10
-7

10
-4

w
f

C
P

U
 t

im
e
 (

a
r
b

.
u

n
it

s)

Figure 2.12. Processor time
requirements for the AIRES
extended thinning algorithm,
plotted versus
Wf = W

(EM)
f = W

(H)
f for

different relative thinning
levels. All cases correspond
to 1019 eV proton showers.

CHAPTER 2. GENERAL CHARACTERISTICS OF AIRES 33

have the same shape as the ones plotted in figure 2.11 (page 32), but present a global shift in the
abscissas scale which is proportional to the logarithm of the thinning level (for example, the weights
for the 10−6 distribution are one order of magnitude lower than the ones for 10−5 and so on).

The improvement in the lateral distribution plots is, of course, not free: The CPU time per shower
is increased when Wf decreases. Figure 2.12 (page 32) represents the CPU time consumption per
shower as a function of Wf for various thinning energies. The time unit is the average time required
to complete a shower simulated with 10−5 relative thinning and Wf →∞.

The CPU time per shower increases monotonically when Wf decreases. For any Eth and Wf = 1,
for example the required time is roughly 5 times larger than the one for Wf → ∞. But it is 1.6 (13)
times lower than the one corresponding to the Hillas algorithm for Eth/10 (Eth/100). These figures
may represent an important time saving factor in certain circumstances, for example when evaluating
lateral distributions like the ones of figure 2.10 (page 31).

The use of the AIRES extended thinning algorithm with finite Wf is always recommended, how-
ever. Even in the least favorable cases, it is possible to get smoother distributions for every observable
setting Wf not larger than 20 and thus eliminating the particle entries with unacceptably large weights.

Chapter 3

Steering the simulations

There are many parameters that must be specified before and during an air shower simulation job.
The Input Directive Language (IDL) is a part of the AIRES system and consists in some 70 human-
readable directives that permit an efficient control of the simulations in a comfortable environment.

The most common IDL directives are described in this chapter, and many illustrative examples
are discussed; a detailed description of the IDL language is placed in appendix B (page 106). It is
recommended to properly install the software (see appendix A) before proceeding with the following
sections.

3.1 Tasks, processes and runs

The simulation of high energy air showers is a CPU intensive task which can demand days of proces-
sor time to complete. The AIRES program was designed taking this fact into account: It includes an
“auto-saving” mechanism to periodically save into an internal dump file (IDF) all relevant simulation
data. In case of a system failure, for example, the simulation process can be restarted at the point of
the last auto-saving operation, thus avoiding loosing all the previous simulation effort.

The processing block that goes between two consecutive auto-save operations is called a run.
With task we mean a specific simulation job, as defined by the input directives (for example, a task
can be “simulate ten proton showers”); and with process we identify a system process, which starts
when AIRES is invoked and ends when control is returned to the operating system.

A task can be completed after one or more processes, and there can be one or more runs within a
process. The limit case consists in having a task finished in a single run (no auto-save) completed in
a single process (the program invoked just once).

3.2 The Input Directive Language (IDL)

All the main simulation programs (the default program Aires and the executables for the different
available external hadronic models AiresModel), and the summary program AiresSry read their in-

34

CHAPTER 3. STEERING THE SIMULATIONS 35

put directives from the standard input channel, and use a common language to receive the user’s
instructions. This language is called Input Directive Language (IDL).

The IDL directives are written using free format, with one directive per line (there are no “contin-
uation lines”, but each line can contain up to 8,000 characters). Special characters like tab characters,
for example, are treated as blank characters.

All directives are scanned until either an End directive or an end of file is found. Most directives
can be placed in any order within the input stream.

IDL directives can be classified as dynamic or static. Dynamic directives are processed every
time the input data is scanned. Static ones can be set only at the beginning of a task: Any subsequent
setting will not be taken into account. For instance, the maximum CPU time per run is controlled
by a dynamic directive (it can be changed at the beginning of every process, and is a parameter that
does not affect the results of the simulation); the ground altitude, instead, is an example of a static
parameter that cannot be changed during the simulations.

The IDL sentence begins with the directive name. IDL is a case sensitive language, and in general
directive names mix capital and lowercase letters. The directives can be abbreviated. Consider for
example the following directive name PrimaryParticle. You must specify the underlined part, and
may or may not use the remaining characters (Primary, PrimaryPart, PrimaryParticle refer to the
same instruction).

3.2.1 A first example

There are four directives that should be always specified before starting a simulation task, namely,
the ones that control the task name1, the statements that provide the primary particle type and energy
specifications and the directive which sets the total number of showers to be simulated.

Such a minimal set of specifications can be expressed in terms of IDL directives as follows:

Task a_first_example
Primary proton
PrimaryEnergy 150 TeV
TotalShowers 3
End

These directives, like most IDL directives, are self-explaining and posses a simple syntax. They
can be placed in any order. Notice that the particles are specified by their names and physical quanti-
ties like the energy, for example, are entered by means of a number plus a unit.

3.2.2 Errors and input checking

Every IDL directive is checked for correct syntax when it is read in. Additionally, some elemental
tests of the values given to the directive’s parameters are also made. When an error is detected,

1Actually, the TaskName directive is not mandatory for a task to start, but its default value
GIVE_ME_A_NAME_PLEASE produces file names which are rather inconvenient to manage, and so it is strongly
recommended to always set the name of a task before proceeding with the simulations.

36 CHAPTER 3. STEERING THE SIMULATIONS

a message is written to the standard output channel. Directives with errors are generally ignored.
Consider the following directive:

PrimaryEnergy 100 MeV

If processed by AIRES, it will give the following error message

EEEE

EEEE dd/Mmm/yyyy hh:mm:ss. Error message from commandparse

EEEE Numeric parameter(s) invalid or out of range.

EEEE >PrimaryEnergy 100 MeV<

EEEE

which indicates that the energy specification is out of range.2

AIRES diagnostic messages always include a brief explanation about the circumstances that gen-
erated the message, together with the name of the routine that originated it. The messages can be
classified in four categories, accordingly with their severity: (i) Informative messages are used to
notify the occurrence of certain events, and are generally associated with successfully concluded op-
erations. (ii) Warning messages. Used to put in evidence certain not completely “normal” situations.
In general, processing continues normally. (iii) Error messages indicate abnormal events like invalid
input directives, etc., as illustrated in the previous example. (iv) Fatal messages are issued when a
serious error takes place; in this case the program stops.

The IDL instruction set includes some directives that allow checking a given input data set. Let
us assume that the input directives are saved into a file named myfile.inp. Let us consider also that
this file contains the instructions of the first example previously considered.

The instruction set:

Trace
CheckOnly
Input myfile.inp
End

if processed by AIRES will generate an output similar to the following:
. . .
0:0002 CheckOnly
0:0003 Input myfile.inp
1:0001 Task a_first_example
1:0002 Primary proton
1:0003 PrimaryEnergy 150 TeV
1:0004 TotalShowers 3
1:0005 End
0:0004 End
. . .

2The primary energy must be greater than 500 MeV (see page 123).

CHAPTER 3. STEERING THE SIMULATIONS 37

The CheckOnly directive instructs AIRES to normally read and check the input data, and then stop
without actually starting any simulations. The input lines placed after the Trace statement are echoed
to the terminal. and the Input directives allows including IDL directives placed in other files. Notice
the format used for directive echoing. It includes the line number as well as the file nesting level,
starting by zero for the standard input channel. Input directives can be nested and permit splitting
the input data into separate files. This is most useful for organizing a set of input files including some
common directives in a single shared file included by every particular file, etc.

In UNIX environments it is possible to use one of the scripts of the AIRES Runner System to
automatically check a given input file. For details see chapter 5 (page 93).

3.2.3 Obtaining online help

The AIRES simulation and/or summary programs accept instructions that permit obtaining informa-
tion about AIRES IDL instructions. The information that can be retrieved in this way is not extensive
but it can be useful to the experienced user as a quick guide.

Invoking AIRES interactively and typing “?” will return a list of the names of the IDL directives.
“? *” will cause the list to include also the hidden directives. The prompt “Aires IDL>” typed at
the terminal indicates that AIRES understands that this session is interactive. The Help command is
similar to ? but it will maintain prompting disabled. During an interactive session it is always possible
to enable or disabling the prompt by means of the directive Prompt.

There are two other kinds of help that can be obtained using the current AIRES version, namely,
“? tables” and “? sites”, which display the list of available output data tables (see section 4.1 and/or
appendix C), and the currently defined geographical sites (see section 3.3.5), respectively.

The directive Exit, which can be abbreviated as x, will cause AIRES to stop immediately without
any further action –not even completing the IDL instruction scanning phase– and is useful to end
interactive help sessions.

3.2.4 Physical units

There are many IDL directives which include one or more specifications corresponding to physical
quantities. In most cases these specifications have the format “number + unit”, like in the Prima-
ryEnergy specification of section 3.2.1, for instance. “Number” and “unit” are character strings, the
first one indicates the decimal numerical value for the quantity being specified, while “unit” repre-
sents the unit in which “number” is expressed. The characters used for the unit field resemble the
name assigned in the real world to the corresponding unit, e.g. TeV for Tera-electron-volt.

This feature of the IDL language makes the input files more readable, and diminishes drastically
the possibility of errors in the specifications, especially for those quantities whose validity ranges may
span many orders of magnitude. In such cases a number of commonly used multiples or sub-multiples
of the fundamental unit are surely available.

The complete list of units currently implemented is displayed in table 3.1.

38 CHAPTER 3. STEERING THE SIMULATIONS

Magnitude Units Conversion factors

Length mm 10−3 m
cm 10−2 m
m 1 m
km 103 m
in 0.0254 m
ft 12 in
yd 3 ft
mi 5280 ft

Time ns 10−9 s
sec 1 s
min 60 s
hr 3600 s

Energy eV 10−9 GeV
keV 10−6 GeV
MeV 10−3 GeV
GeV 1 GeV
TeV 103 GeV
PeV 106 GeV
EeV 109 GeV
ZeV 1012 GeV
YeV 1015 GeV
J 6.24× 109 GeV

Magnitude Units Conversion factors

Angle deg 1 deg
rad 180/π deg

Atmospheric g/cm2 1 g/cm2

depth
Density g/cm3 1 g/cm3

kg/m3 10−3 g/cm3

kg/dm3 1 g/cm3

Magnetic nT 1 nT
field uT 103 nT

mT 106 nT
T 109 nT
uG 10−1 nT
mG 102 nT
Gs 105 nT
gm 1 nT

Temperature K 1 K
C TC + 273.15
R (5/9)TR
F (5/9)(TF + 459.67)

Table 3.1. Physical units accepted within IDL directives. The underlined keywords indicate the units
used internally to store the corresponding quantities. Time specifications using hr, min and/or sec
may consist in the combination of more that one field, like in 3 hr 30 min, for example. The
magnetic field unit T (Gs) stands for the SI (cgs) unit Tesla (Gauss), while gm corresponds to γ (1
γ = 1 nT). The formulas for temperatures in the Celsius (C), Rankine (R), and Fahrenheit (F) scales
indicate how to convert a temperature in the respective scale to the absolute Kelvin scale.

CHAPTER 3. STEERING THE SIMULATIONS 39

3.2.5 Carrying on

In figure 3.1 a second example of an IDL input data set is displayed. Notice first that IDL instructions
can be commented: All the characters following a ‘#’ character are ignored.

The Skip statement is also useful to place comments and/or introduce plain text in the input files
(with no need of single line comment ‘#’ characters), as well as to skip a part of the directives without
deleting the lines.

Comments and skipped lines are completely ignored: They just appear in the input file. Some-
times this is not convenient, and it may be desirable to save their contents together with the output
generated by the simulating program. The Remark directive provides a mean to do this. The state-
ment

Remark JUST AN EXAMPLE

placed in the example being discussed, instructs AIRES to place the comment ‘JUST AN EXAMPLE’
together with the output data. There is no limit in the number of remark instructions that may appear
inside a given input instruction set. The Remark directive possesses another alternative syntax, very
useful for multi-line text:

Rem &eor
This is the first line of a multi-line remark.
This is the second line
S p a c e s and TABS will be honored.
. . .
The label &eor marks the end of the remark.
&eor

The directives that follow illustrate a very useful feature if the IDL, which is the possibility of
defining global variables. Such variables can be used as replacement text within the IDL input stream,
and/or be passed to output files or external modules called by AIRES. The variables must be defined
before they can be used. This can be done by means of the SetGlobal directive. The Import directive
permits to import OS environment variables. Variables can be overwritten, and deleted using the
DelGlobal directive.

The global variable replacement mechanism allows also to insert (simple) calculations when
needed. Let us consider the following example:

SetGlobal LogEprimeV 18.5
. . .
PrimaryEnergy {= pow 10 {= subtract {LogEprimeV} 18}} EeV

When parsing the PrimaryEnergy directive, the expression between brackets will be processed to
return the result of 1018.5−18 = 3.16227766, and therefore the primary energy will finally be set
to 3.16227766 EeV. The equal (=) character at the beginning of the field between backets indicates
that what follows is an expression of the form function args that will be evaluated while parsing
the directive. The number of arguments can be 0, 1 or 2 according with the function. The available
functions are listed in table 3.2

40 CHAPTER 3. STEERING THE SIMULATIONS

Function Args Operation
ADD 2 a1 + a2
SUBTRACT 2 a1 − a2
MULTIPLY 2 a1 × a2
DIVIDE 2 a1/a2
POWER 2 aa2

1
MIN 2 min(a1, a2)
MAX 2 max(a1, a2)
MEAN 2 (a1 + a2)/2
GMEAN 2

√
|a1a2|

ABS 1 |a1|
NEGATIVE 1 −a1
NINT 1 nint(a1)
SQRT 1

√
a1

EXP 1 ea1

LOG 1 ln(a1)
LG10 1 log10(a1)
SIN 1 sin(a1)
COS 1 cos(a1)
SEC 1 1/ cos(a1)
TAN 1 tan(a1)
ASIN 1 arcsin(a1)
ACOS 1 arccos(a1)
ASEC 1 arccos(1/a1)
ATAN 1 arctan(a1)
ATAN2 2 arctan2(a1, a2)
DEG2RAD 1 (π/180)a1
RAD2DEG 1 (180/π)a1
PI 0 π

RANDOM 0 uniform random number in [0, 1)
XVATH 1 Xv(a1) atm. depth [g/cm2] at alt a1 [m]
HATXV 1 h(a1) alt. [m] at atm. depth [g/cm2]
DENSATH 1 ρ(a1) density [g/cm3] at alt a1 [m]
HATDENS 1 h(a1) alt. [m] at density [g/cm3]
XMAXEST 2 Rough estimation of Xmax

Table 3.2. Available IDL mathematical operations. The function names are NOT case sensitive.
When there are no ambiguities, they can be abbreviated downto the first three characters.

CHAPTER 3. STEERING THE SIMULATIONS 41

#
An example of an AIRES IDL input data set.

Skip &next

The directive "Skip" skips all text until the label &label is
found. Notice that it is not equivalent to a "go to" statement
since it is not possible to skip backwards.

As it can easily be seen, most directive names are self-explaining.
&next

Remark JUST AN EXAMPLE

It is possible to define variables that can be used later within
the input file and/or be passed to output files or special
primary modules.

SetGlobal MyVariable This string is associated with the variable.
SetGlobal VRem Another variable.

Remark {VRem} # This expands to: Remark Another variable.

Import HOME # Importing OS environmental variables.

The input directives define a "task". Tasks are identified by
their task name and (eventually) version. If not defined, the
version is zero.

Task mytask # Use "Task mytask 5" to explicitly set task
version to 5.

The following three directives are mandatory (have no default
values)

TotalShowers 2
PrimaryParticle Proton
PrimaryEnergy 1.5 PeV
#
The remaining directives allow controlling many parameters of the
simulations. The respective parameters will take a default value
whenever the controlling directive is not present.
#

PrimaryZenAngle 15 deg
Thinning 1.e-4 Relative # Relative or absolute

specifications allowed.

Ground 1000 g/cm2

You can freely set the number of observing levels to record the
shower longitudinal development. You can define up to 510
observing levels and (optionally) altitude of the highest and
lowest levels.

ObservingLevels 41 100 g/cm2 900 g/cm2

Figure 3.1. Sample AIRES input.

42 CHAPTER 3. STEERING THE SIMULATIONS

#
Threshold energies. Particles are not followed below these
energies.

GammaCutEnergy 200 KeV
ElectronCutEnergy 200 KeV
MuonCutEnergy 1 MeV
MesonCutEnergy 1.5 MeV # Pions, Kaons.
NuclCutEnergy 150 MeV # Nucleons and nuclei.

#
Some output control statements.
#

Compressed particle data files related directives.

SaveInFile lgtpcles e+ e-
SaveNotInFile grdpcles gamma

Saving the ASCII (portable) version of the IDF file (ADF), after
finishing the simulations.

ADF On

#
No tables are printed or exported if no PrintTables ExportTables
directives are explicitly used.
#
PrintTable 1291 # Longit. devel. of all charged particles.
PrintTable 1707 # Energy longitudinal development of muons.
PrintTable 2207 Opt d # Setting some options.
PrintTable 3001 Opt M # Here too.
#
ExportTable 2793 Opt M # Exported tables are placed in separate,
ExportTable 5501 # plain text files for further processing

(e. g. plotting).

End # End of input data stream.

Figure 3.1. (continued)

CHAPTER 3. STEERING THE SIMULATIONS 43

The input data set of figure 3.1 continues with the TaskName directive and the three mandatory
directives already introduced in section 3.2.1.

The directives that follow set some characteristics of the showers that are going to be simulated.
The PrimaryZenAngle directive gives the shower zenith angle, measured as indicated in figure 2.1
(page 9). This directive, and the directive PrimaryAzimAngle permit the user to completely control
the inclination of the shower axis. They can be used to set this inclination to a fixed value, or to
select variable settings selected at random with adequate probability distributions. In this case the
alternative syntax of the directives should be used. For a more detailed description see section 3.3.3
(page 51) and/or appendix B (page 106).

The GroundAltitude specification indicates the height above sea level of the ground surface
(measured vertically). The specification can be a length or a vertical atmospheric depth expressed in
g/cm2 (see page 117). On the other hand the statement

ObservingLevels 41 100 g/cm2 900 g/cm2

sets the variables No, X
(1)
o and X

(No)
o of equation (2.19).

The IDL instructions continue with five directives that fix the cut energies for different particle
kinds. Every particle whose kinetic energy falls below the threshold corresponding to its kind will be
no more propagated by the simulation program, as explained in section 2.2.3 (page 20).

There are many observables that can be defined and studied to determine the behavior of air
showers with given initial conditions. Generally only a small fraction of these observables are of
interest for a determined user; and of course, the set of relevant observables do vary with the particular
problem being studied.

These somewhat contradictory facts were taken into account when designing AIRES output units,
together with an analysis of the output system of existing programs [1, 36]. As a result, the simulation
program was provided with two air shower data output units: The particle data unit and the summary
unit.

The particle data unit generates compressed particle data files containing detailed information
(in a per particle basis) of particles reaching ground or passing across the different observing levels.
The other output unit processes data stored in a number of internal tables (or histograms) which
were calculated during the simulations and which correspond to standard observables like lateral
distributions, energy distributions and so on.

The output system will be treated in detail in chapter 4 (page 69). Nevertheless, it is worthwhile
mentioning here that there are several IDL directives that permit controlling its behavior.

In our example of figure 3.1 (page 41), the directives SaveInFile and SaveNotInFile control the
kind of particles that are saved in the corresponding compressed files, identified by their extensions
(lgtpcles and grdpcles).

The default action for the file containing record for the particles reaching ground (extension grd-
pcles) is that all particle kinds must be saved. On the other hand, no particles are saved by default in

44 CHAPTER 3. STEERING THE SIMULATIONS

the longitudinal tracking particle file (extension lgtpcles). Therefore, the statements

SaveInFile lgtpcles e+ e-
SaveNotInFile grdpcles gamma

mean that only electrons and positrons are going to be saved in the longitudinal file, and that all
particles but gamma rays are going to be recorded in the ground particle file. The particle kind
specifications may include one or more particle or particle group names (see section 2.2.1).

There may be more than one of these statements for each file, and their meaning depends on
the order they are placed within the input data stream. As an example, let us consider the following
statements:

SaveInFile somefile None
SaveInFile somefile Muons

They ensure that only muon records will be saved in file3 somefile: The first statement “clears”, and
the second enables muons. If the order is changed:

SaveInFile somefile Muons
SaveInFile somefile None

then the result is that somefile will be considered disabled because the last None specification prevents
any particle kind from being saved in the corresponding file.

The logical switch controlled by the instruction ADF On, enables the portable dump file, the
portable version of the IDF file.

The summary unit manages more than 300 output data tables that can be selectively included
within the output data. Each table is identified by a numerical code, and the directives PrintTables
and ExportTables permit including a table listing within one of the output files, or generating a
separate plain text file with the corresponding table, respectively. The complete list of available
tables is placed in appendix C (page 132). No tables are exported or “printed” if no Export or Print
directives are included within the input data. Notice also that there are several options that modify the
resulting output. Such options control the normalization of histograms, output format, etc. A more
detailed discussion on this subject is placed in section 4.1 (page 69).

It is strongly recommended to edit a plain text file containing some IDL directives, run the simu-
lation program and analyze the obtained output. In UNIX environments this can be made by means
of the command

Aires < myfile.inp

or, alternatively

AiresModel < myfile.inp

where myfile.inp is the name of the file containing the IDL directives, and Model identifies the exter-
nal hadronic package linked with the simulation program used (see page 3).

3somefile actually indicates the extension of the corresponding file, like grdpcles or lgtpcles for example.

CHAPTER 3. STEERING THE SIMULATIONS 45

Input data listing

The output typed at the terminal by any of the simulation programs will be similar to the sample
displayed in figure 3.2. Among other data, AIRES standard output includes a listing of the most
important input parameters. All the parameters that are not explicitly set will take a default value.
When default values are in effect, it is indicated with a (D) symbol placed before the parameter’s
description. All The variables included in this list can be modified by means of IDL instructions.

The input parameter listing is divided in sections accordingly with the different kind of variables
that control the computational and physical environment of the simulations. These sections are

Run control. Includes all the parameters controlling the conditions of the simulations, namely, the
total number of showers, the number of showers per run, the number of runs per process and the
(maximum) CPU time per run. The directives that control these variables are dynamic, and may
therefore vary during the simulations. The quantities displayed in the input parameter listing
correspond thus to instantaneous values of the mentioned parameters.

File names. A listing with the names of all the files that will be created during the simulations (ex-
cluding, of course, internal scratch files). A detailed description of the output files that can be
created by the simulation programs, together with guidelines on how to manage them can be
found in chapter 4 (page 69); we just give here a brief description of them:

Log file (taskname.lgf). This file contains information about the events that took place during
the simulations. It contains also a summary of the input parameters that were in effect.
Most of the data that goes into the log file is also written into the standard output channel.

Summary file (taskname.sry, also taskname.tex). Output summary. This includes general
simulation data and all the tables that were printed using IDL directive PrintTables.

Exported data files (taskname.tnnnn). Plain text files containing output tables.

Task summary script file (taskname.tss). File containing a summary of input and output
data, written in a format suitable for processing with other programs.

Binary dump file (taskname.idf). This file contains (in machine-dependent binary format) all
the relevant simulation data. This file is periodically updated during the task processing.
In the case of an interruption, it is possible to restart the simulations from the last update.
The file is also useful to obtain relevant data after the simulation is completed, or even
during it. This can be done with the help of the summary program AiresSry.

ASCII dump file (taskname.adf). Portable version of the IDF file, written at the end of the
task. Like the IDF file, this file can be processed with the summary program AiresSry.

Compressed output files (taskname.grdpcles and/or taskname.lgtpcles). These files contain
detailed particle data. The ground particle file, for example, consists of a series of records
of all the particles that reached ground in specified circumstances. Thanks to the com-
pressed data formatting used, it is possible to save a large number of particle records

46 CHAPTER 3. STEERING THE SIMULATIONS

>>>>
>>>> This is AIRES version V.V.V (dd/Mmm/yyyy)
>>>> (Compiled by . . .)
>>>> USER: xxxxx, HOST: xxxxx, DATE: dd/Mmm/yyyy
>>>>

> dd/Mmm/yyyy hh:mm:ss. Reading data from standard input unit
> dd/Mmm/yyyy hh:mm:ss. Displaying a summary of the input directives:

>>>>
>>>> REMARKS.
>>>>

JUST AN EXAMPLE

>>>>
>>>> PARAMETERS AND OPTIONS IN EFFECT.
>>>>
>>>> "(D)" indicates that the corresponding default value is being used.
>>>>

Task Name: mytask

RUN CONTROL:
Total number of showers: 2

(D) Showers per run: Infinite
(D) Runs per process: Infinite
(D) CPU time per run: Infinite

FILE NAMES:
Log file: mytask.lgf

Binary dump file: mytask.idf
ASCII dump file: mytask.adf

Compressed data files: mytask.grdpcles
mytask.lgtpcles

Table export file(s): mytask.tNNNN
Output summary file: mytask.sry

BASIC PARAMETERS:
(D) Site: Site00

(Lat: .00 deg. Long: .00 deg.)
(D) Date: dd/Mmm/yyyy

Primary particle: Proton
Primary energy: 1.5000 PeV

Primary zenith angle: 15.00 deg
(D) Primary azimuth angle: .00 deg
(D) Zero azimuth direction: Local magnetic north

Thinning energy: 1.0000E-04 Relative
(D) Injection altitude: 100.00 km (1.2829219E-03 g/cm2)

Ground altitude: 297.96 m (1000.000 g/cm2)
First obs. level altitude: 16.383 km (100.0000 g/cm2)
Last obs. level altitude: 1.1733 km (900.0000 g/cm2)

Obs. levels and depth step: 41 20.000 g/cm2

Figure 3.2. Sample AIRES terminal output.

CHAPTER 3. STEERING THE SIMULATIONS 47

(D) Geomagnetic field: Off
(D) Table energy limits: 10.000 MeV to 1.1250 PeV
(D) Table radial limits: 50.000 m to 2.0000 km
(D) Output file radial limits: 100.00 m to 12.000 km (grdpcles)
(D) 100.00 m to 12.000 km (lgtpcles)

ADDITIONAL PARAMETERS:
(D) Individual shower data: Brief

Cut energy for gammas: 200.00 KeV
Cut energy for e+ e-: 200.00 KeV

Cut energy for mu+ mu-: 1.0000 MeV
Cut energy for mesons: 1.5000 MeV

Cut energy for nucleons: 150.00 MeV
(D) Bartol inelastic mfp’s: On
(D) Gamma rough egy. cut: 2.0000 MeV
(D) e+e- rough egy. cut: 2.0000 MeV
(D) Hadronic Mean Free Paths: SIBYLL
(D) SIBYLL switch: On

MISCELLANEOUS:
(D) Seed of random generator: Automatic
(D) Atmospheric model: Linsley’s standard atmosphere

>>>>
> dd/Mmm/yyyy hh:mm:ss. Beginning new task.
> dd/Mmm/yyyy hh:mm:ss. Initializing SIBYLL 1.6 package.
Initialization of the SIBYLL event generator

. . . (eventual output from SIBYLL) . . .

> dd/Mmm/yyyy hh:mm:ss. Initialization complete.
> dd/Mmm/yyyy hh:mm:ss. Starting simulation of first shower.
> dd/Mmm/yyyy hh:mm:ss. End of run number 1.
CPU time for this run:

> dd/Mmm/yyyy hh:mm:ss. Writing ASCII dump file.
> dd/Mmm/yyyy hh:mm:ss. Task completed.
Total number of showers: 2

> dd/Mmm/yyyy hh:mm:ss. Writing summary file.
> dd/Mmm/yyyy hh:mm:ss. End of processing.

Figure 3.2. (continued)

48 CHAPTER 3. STEERING THE SIMULATIONS

using a moderate amount of disk space. The format is universal, so the files can be writ-
ten by a given machine and processed in a different one. The AIRES system includes a
library of subroutines to process such files (see section 4.2).

Basic parameters. A list of geometrical and physical shower parameters. These variables define the
initial conditions of the shower simulations (primary particle, axis inclination, etc.), as well
as the settings that are in effect for the parameters of the monitoring algorithms (number of
observing levels, range of radial distances for output files, etc.).

Additional parameters. Other shower parameters, generally depending on the model used. Since
the interactions models are replaceable, the type and number of additional parameters may
vary when changing simulation programs. The variables included in this section as well as the
directives that allow controlling them may also be changed in future versions of AIRES. By
default, only the most relevant parameters4 are listed: Quantities associated with hidden IDL
directives (see appendix B) are not included. Nevertheless, AIRES can be instructed to produce
a full listing, by means of the directive: InputListing Full.

Miscellaneous parameters. Other parameters not included in the preceding sections.

3.3 More on IDL directives

3.3.1 Run control

In the example of section 3.2.5 (page 39), no specifications are made about the duration of processes
and runs. This fact shows up in the variables listed in the run control section of the listing of figure 3.2
(page 46), when the default setting, “Infinite” is in effect for the number of showers per run, the num-
ber of runs per process and the CPU time per run. With such settings, the auto-save mechanism for
fault tolerant processing is disabled: The IDF file will be saved only after finishing all the simulations
specified with the input directives.

This can be acceptable for a short simulation in a reliable computer system. For heavy tasks it is
recommended to split the simulations into processes and runs. It is worthwhile mentioning that the
auto-save/restore operations do not alter the results of the simulations, which are bitwise identical
independently of the number of such operations performed.

The IDL directives ShowersPerRun, MaxCpuTimePerRun and RunsPerProcess provide ef-
fective control on the computational conditions of the simulations. The following examples illustrate
how them can be used.

RunsPerProcess 1
MaxCpuTimePerRun 2 hr

These two instructions indicate that a new run should begin every two CPU hours. Since the number
of runs per process is 1, a new run will also imply the beginning of a new process; in other words,

4This also includes all the variables that were explicitly set by means of the corresponding IDL instructions.

CHAPTER 3. STEERING THE SIMULATIONS 49

the input file will be scanned every two CPU hours, allowing for eventual changes in the dynamical
parameters of the simulations.

RunsPerProcess 4
ShowersPerRun 5

Here the maximum CPU time is not set, indicating that there will be no time limit for a run to com-
plete. Instead, every run will finish after concluding the simulations of five showers. The processes
will end when four runs are completed.

The three directives can also be used simultaneously:

RunsPerProcess 2
ShowersPerRun 2
MaxCpuTimePerRun 6 hr

These instructions indicate that a run will finish after six processing hours or after completing two
showers, what happens first.

The run control directives –like any other dynamic directive– can be modified during the simu-
lations if needed. The changes will be effective after a new process is started (see section 3.1). Let
us assume that a certain task is started with the control parameters of the previous example. After a
while it is decided that the maximum cpu time per run is too high and that there is no need to limit
the number of showers per run. The input file is thus modified: (i) The MaxCpuTimePerRun line is
replaced by

MaxCpuTimePerRun 3 hr

(ii) The ShowersPerRun line is deleted. After finishing the current process (with the old settings this
may demand up to 12 CPU hours), and restarting the simulation program, the input file is scanned
again and the new settings will become effective. The changes experimented by these dynamic pa-
rameters will be recorded in the log file (extension .lgf) in the following way

. . .

> dd/Mmm/yyyy hh:mm:ss. Reading data from standard input unit

> dd/Mmm/yyyy hh:mm:ss. Changing maximum number of showers per run.

From: 2 to: Infinite

> dd/Mmm/yyyy hh:mm:ss. Changing maximum cpu time per run.

From: 6 hr to: 3 hr

. . .

The dynamic directives can be changed as many times as needed, including the total number of
showers (controlled by directive TotalShowers) which can be modified either during the simulations
or after completing them to append new showers to an already finished task5.

It is important to remark that the mechanism of dividing a task in several process is possible be-
cause all the relevant simulation data is saved into the internal dump file, and recovered in successive
invocations of AIRES.

5Notice however that it is not possible to append new showers to any task that was initialized with a previous version of
AIRES.

50 CHAPTER 3. STEERING THE SIMULATIONS

In some applications, however, it is necessary to completely disable this mechanism, and force
AIRES to start a new task every time a new new process starts. This can be done with the help of the
ForceInit directive, like in the following example:

Task myname
ForceInit
. . .

On the first invocation of AIRES, the task myname will be initialized and executed accordingly with
the input directives. In a second call, the AIRES initializing procedures will check for the existence
of the file myname.idf. After finding it, the task version will be increased by one, producing a IDF
named myname_001.idf, and then the new task will be executed normally. On successive calls,
the version number will be increased repeatedly, until finding the first non-existent file with name
myname_vvv.idf.

3.3.2 File directories used by AIRES

The simulation programs read and/or write several files that contain different kinds of data. By default,
all the files generated by AIRES are located in the working directory, defined as the current directory
at the moment of invoking AIRES.

There are certain cases, however, where this setting is not adequate. For that reason, the IDL
instruction set contains directives allowing to control the placement of AIRES files.

Let us first define the set of directories used by the AIRES system during the simulations:

Global. Containing the log, IDF, ADF and summary files.

Compressed output. Sometimes referred simply as Output directory, contains the compressed out-
put files.

Export. Containing all the exported data files.

Scratch. Containing most of the internal files that are generated during the simulations, including
the particle stack scratch files.

The output and scratch directories default to the current working directory when not specified. On the
other hand, the global and export directory default to the current setting of the output directory.

The IDL directive FileDirectory permits complete control on the listed directories. For example,
the sequence of instructions:

FileDirectory Scratch /mytmpdir
FileDirectory Export /myexportdir

sets the scratch (export) to the strings (must be meaningful to the operating system) /mytmpdir
(/myexportdir). The directory specifications may be either absolute or relative. Relative speci-
fications are always with respect to the working directory. In the preceding example the remaining
directories are not specified, and will therefore take their respective default settings.

CHAPTER 3. STEERING THE SIMULATIONS 51

The directive

FileDirectory All /mydir

simultaneously sets the global, output and export directories.
There is an additional set of directories that can be specified while scanning the input data. The

following instructions, for instance,

InputPath Insert /dir1:/dir2
InputPath Append /dir3
Input myinputfile.inp

will cause AIRES to search for file myinputfile.inp in the current working directory and –if not
found there– in all the directories specified by means of the InputPath directives (notice the two
alternative syntaxes). The search path is initially set to a string that contains the bin and airesinputs
subdirectories included within the AIRES distribution. To eliminate those directories from the file
search path (in case you really need it!) you can invoke the InputPath directive with no arguments to
clear the search path, or without the Insert or Append modifiers to set the path to exactly the specified
directories as in the following example:

InputPath /dir1:/dir2 ...

In this last case, input files will be searched for within the current directory, and the directories
specified by the InputPath directive.

3.3.3 Defining the initial conditions

There are two mandatory specifications related to shower parameters that must always appear within
the input data, namely, primary particle kind and energy.6

These two specifications, together with other related ones permit a very wide range of specifica-
tions for the shower parameters. Let us investigate some of the possible alternatives.

Mixed composition

The primary particle needs not be unique. AIRES allows for simulating showers with different pri-
mary particles each. The following example illustrates this feature:

PrimaryParticle Proton 0.6
PrimaryParticle Iron 0.4

With such settings, the primary will be proton (iron) with 60% (40%) probability. This means that in
100 simulated showers, approximately 60 will be proton showers while the remaining ones will have
iron primaries.

6When using special primary modules the primary energy can be defined dynamically from the external module every
time it is invoked. In this case there in no obligation of specifying it via a IDL directive.

52 CHAPTER 3. STEERING THE SIMULATIONS

If n alternative primary particles, pi, i = 1, . . . , n were defined, with weights wi (wi ̸= 0), then
the probability for any shower of being initiated by particle pj , 1 ≤ j ≤ n is given by

Pj = |wj |∑n
i=1 |wj |

(3.1)

Therefore, the weights entered in the IDL directives need not be normalized.
Besides this mixed composition feature, AIRES allows also to define special primary particles

processed by external modules. For details see section 3.5 (page 63).

Varying energy

The directive

PrimaryEnergy Emin Emax γ

(see page 123), indicates that the primary energies will be in the interval [Emin, Emax], selected with
probability [28]:

p(E) dE = U−1 E−(γ+1) dE, Emin ≤ E ≤ Emax, (3.2)

where

U =
∫ Emax

Emin
E−(γ+1) dE =

1
γ

(
E−γ

min − E−γ
max

)
γ ≠ 0

ln (Emax/Emin) γ = 0
(3.3)

γ can take any value. If not specified it is taken as 1.7.

Zenith and azimuth angles

The zenith angle directive placed in the example of figure 3.1 (page 41) corresponds to setting the an-
gle to a fixed value. In this case the azimuth angle defaults to zero. On the other hand, the instruction

PrimaryZenAngle 0 deg 72 deg S

indicates that the zenith angle distributes from 0◦ to 72◦ with sine distribution7

Psine(Θ) dΘ = U−1 sin Θ dΘ, Θmin ≤ Θ ≤ Θmax, (3.4)

where

U =
∫ Θmax

Θmin
sin Θ dΘ = cos Θmin − cos Θmax. (3.5)

An alternative to the S specification is the SC (or CS) specification which corresponds to a sine-
cosine distribution:

Psin cos(Θ) dΘ = U−1 sin Θ cos Θ dΘ, Θmin ≤ Θ ≤ Θmax, (3.6)
7The sine distribution is sometimes called cosine distribution, relating it with the accumulative probability function of

the sine distribution: Fsine(Θ) =
∫ Θ

0 Psine(u) du.

CHAPTER 3. STEERING THE SIMULATIONS 53

where

U = 1
2

∫ Θmax

Θmin
sin(2Θ) dΘ = 1

4
[cos(2Θmin)− cos(2Θmax)] . (3.7)

For varying zenith angles, the default for the azimuth angle is to uniformly distribute in the interval
[0◦, 360◦]. In this case the sine distribution corresponds to showers with directions having a uniform
solid angle distribution.

The azimuth angle can also be set as a varying angle. The directive

PrimaryAzimAngle 37.2 deg 39.5 deg

indicates that the azimuth Φ will be uniformly distributed in the interval [37.2◦, 39.5◦].
Using simultaneously instructions for both the zenith and azimuth angles, it is possible to simulate

showers coming from a determined direction in the celestial sphere.
As pointed out in section 2.1.1 (page 9), the x-axis (zero azimuth axis) corresponds to the local

magnetic north. If desired, it is possible to specify geographic azimuths:

PrimaryAzimAngle 37.2 deg 39.5 deg Geographic

In the preceding directive, the Geographic keyword indicates that the origin of the azimuth angles is
the direction of the local geographic north. It is worthwhile mentioning that this does not alter the
axis definitions of section 2.1.1; when geographic azimuths are in effect, the azimuth with respect to
the AIRES coordinate system, Φ, is evaluated via

Φ = D− Φgeographic (3.8)

where D is the geomagnetic declination angle defined in section 2.1.5 (page 17). Notice that positive
geographic azimuths indicate eastwards directions. For a complete description of this directive see
page 123.

Position of injection, ground and observing levels

The directives InjectionAltitude (or its synonym InjectionDepth), GroundAltitude (or its syn-
onym GroundDepth) and ObservingLevels permit controlling the position of the injection point,
the ground surface and the different observing levels, respectively.

All the altitude specifications refer to vertical altitudes, noted as zv in figure 2.1 (page 9), and can
be expressed either as lengths (above sea level) or vertical atmospheric depths. Whenever necessary,
AIRES transforms lengths into vertical depths and vice-versa using the current atmospheric model.

Notice that the vertical altitudes are equal to the corresponding z-coordinates only for points
located in the z-axis. To illustrate this point, let us consider the following instructions

InjectionAltitude 100 km
GroundAltitude 1000 m
PrimaryZenAngle 60 deg

54 CHAPTER 3. STEERING THE SIMULATIONS

With such specifications, the primary particles will be injected at an altitude of 100 km above sea
level, measured along the vertical passing by the injection point. Taking into account that the shower
axis has an inclination of 60 degrees, and applying equation (2.1), it is possible to calculate the z-
coordinate of the injection point, also referred as central injection altitude. In this case the result is
zc = 17962 m.

The positions of the observing levels defined in section 2.2.3 (page 23) can be set using Observ-
ingLevels. This directive has two different formats:

(i) ObservingLevels No, with No an integer not less than 4.

In this case the positions of the observing levels are set taking into account the injection and
ground vertical depths. Let Xi (Xg) be the injection (ground) depth, then the spacing between
observables and the positions of the first and last observing levels are set via

∆Xo = Xg −Xi

No + 1

X
(1)
o = Xi + ∆Xo

X
(No)
o = Xg −∆Xo

(3.9)

(ii) ObservingLevels No Xa Xb, with No an integer not less than 4 and Xa and Xb valid vertical
depth or altitude specifications (Xa ̸= Xb).

In this second case the positions of the first and last observing levels are set accordingly with
Xa and Xb, with no dependence on the positions of the injection and ground levels:

X(1)
o = min(Xa, Xb), X(No)

o = max(Xa, Xb). (3.10)

The spacing between consecutive levels is evaluated using equation 2.19.

3.3.4 Atmosphere

In AIRES the profile of atmospheric depth and density is conveniently modeled via multilayer param-
eterizations like the Linsley described in section 2.1.2.

The main directive to set the atmospheric profile is Atmosphere. For example,

Atmosphere SouthPoleAvg

sets as current atmospheric model the predefined model identified by the string “SouthPoleAvg”. The
available predefined models are listed in page 109. The default atmospheric profile is Linsley, and
corresponds to a parameterization of the US standard atmosphere [19].

Some of the predefined model accept parameters. Consider the following example:

Atmosphere Isothermic Temp 28 C Dens0 1.221 kg/m3

CHAPTER 3. STEERING THE SIMULATIONS 55

Directive Args Action
AddLayer hbeg hend ρbeg ρend Adds an exponential layer.

AddLinLayer hbeg hend ρbeg ρlay Adds a linear layer (for advanced users).

AtmDefault Model id Sets the atmospheric model to use to provide data
corresponding to MatchDefault qualifiers or au-
tomatically added layers.

AtmIdent Model id string Sets the model identification string (maximum 16
characters).

AtmName Model long name Sets the model name (maximum 42 characters).

End Ends processing of AddAtmosModel instructions.

Table 3.3. Instructions recognized by the IDL directive AddAtmosModel.

In this case the Atmosphere directive sets a isothermic model specifying a temperature of 28 C, and
a density at sea level of 1.221 kg/m3. The parameters may be specified in any order, and in case of
missing specification a default value is provided.

Besides selecting among the predefined models, it is possible to add user-defined custom models
by means of the AddAtmosModel directive. This directive allows to define a multilayer model by
specifying the beginning and ending altitudes of each layer together with the densities at both layer
ends. Then AIRES uses those data to calculate the multilayer coefficients, and include the defined
model in the list of available ones. In case the user-specified layers do not cover the minimum range
of altitudes going from sea level up to 100 km.a.s.l., AIRES will automatically add layers (using the
default atmospheric model) to complete the description.

Consider the following example:

AddAtmosModel &mylabel

AtmIdent MyModelIdStr

AtmName My atmospheric model

AtmDefault Linsley

AddLayer 0 m 800 m MatchDefault 1.2184 kg/m3

AddLayer 800 m 4000 m 1.2184 kg/m3 0.8422 kg/m3

AddLayer 4000 m 12 km 0.8422 kg/m3 0.2765 kg/m3

AddLayer 12 km 35 km 0.2765 kg/m3 6.4846E-6 g/cm3

AddLayer 35 km 100 km 6.4846E-6 g/cm3 MatchDefault

&mylabel

In this case the input data for the AddAtmosModel directive is placed just after the directive as a
here-document delimited by the label &mylabel. The format of the instructions is self-explaining.
Each AddLayer instruction requires four quantities, namely, layer beginning and ending altitudes,

56 CHAPTER 3. STEERING THE SIMULATIONS

and the corresponding densities. The information that the user must provide with these instructions is
redundant, since in the intermediate boundaries a same value must be specified twice. The advantages
of more robustness and human readability amply compensate the extra effort of duplicating some data.
Additionally, the AddLayer instructions can be placed in any order. Notice also that both the altitudes
and densities are specified with two fields in all cases (number + unit). Any of the length or density
units recognized by AIRES can be used (see table 3.1).

Once the model is defined via the AddAtmosModel directive, it can be set as the current model
with the Atmosphere command

Atmosphere MyModelIdStr

Table 3.3 contains a listing of all the instructions recognized by directive AddAtmosModel. The
demonstration examples that are included in the AIRES distribution contain several additional exam-
ples that explain in more detail how to define a custom atmospheric model.

3.3.5 Geomagnetic field

The components of the Earth’s magnetic field used by the simulation programs can either be set
manually or calculated with the help of the IGRF model [15] (see section 2.1.5). With the help of this
model it is possible to obtain an accurate estimation of the geomagnetic field in a given geographic
location and for a determined date.

To activate this mechanism for “automatic” evaluation of the magnetic field, it is necessary to
specify both a geographic place and a date.

The directive Site tells AIRES the name of the site selected for the simulations. For example,

Site SouthPole

indicates that the selected place is “SouthPole”. This name is one of the predefined locations that
form the AIRES site library. Besides “SouthPole”, this library initially contains several other sites
related with air shower experiments. All the predefined sites are listed in table 3.4.

To specify a site that is not included among the predefined ones, it is first necessary to append
it to the site library by means of the AddSite directive. Let us consider, for instance, the following
directive:

AddSite cld -31.5 deg -64.2 deg 387 m

A new site “cld” is defined. The command parameters represent, respectively, the latitude, longitude
and altitude above sea level that correspond to the defined site. The name string cannot contain more
than 16 characters; names are case sensitive and must be different to all the previously defined ones.

The Date directive defines the date of an event. There are two alternative syntaxes, as displayed
in the following examples:

Date 2018.2
Date 2018 3 1

CHAPTER 3. STEERING THE SIMULATIONS 57

Site name Latitude Longitude Altitude (m.a.s.l)
Site00 0.00◦ 0.00◦ 0
SouthPole 90.00◦ S 0.00◦ 2835
Malargue 35.20◦ S 69.20◦ W 1425
ElNihuil 35.20◦ S 69.20◦ W 1400
TelescArray 39.30◦ N 112.91◦ W 1400
AGASA 35.78◦ N 138.50◦ E 900
CASKADE 49.09◦ N 8.88◦ E 112
Dugway 40.00◦ N 113.00◦ W 1550
ElBarreal 31.50◦ N 107.00◦ W 1200
FlysEye 41.00◦ N 112.00◦ W 850
HaverahPark 53.97◦ N 1.64◦ W 220
Puebla 19.50◦ N 98.00◦ W 2200
SydneyArray 30.50◦ S 149.60◦ W 250
Yakutsk 61.70◦ N 129.40◦ E 850

Table 3.4. Predefined sites of the AIRES site library. Site names are case sensitive. The data for
Haverah Park, Sydney Array and Yakutsk sites come from reference [34].

In the first statement the date is given as a floating point number taking the year as the time unit, while
in the second the format “year month day” is used.

There are no special restrictions on the date specification. However, the IGRF database imple-
mented in the current AIRES version contains data for the years 1955 to 2020. For dates outside
that interval it is necessary to extrapolate the corresponding data in order to evaluate the geomagnetic
field. This may lead to inaccurate estimations for dates very far from the validity range of the model
(more than ten years away). Nevertheless, extrapolations near the given boundaries are acceptable,
and are of course necessary for calculations beyond the year 2015.8

In case of missing date specification, it is set accordingly with the system time at the moment of
starting the simulations.

Once a site and a date are set, the Earth’s magnetic field will be calculated by means of the IGRF
model, unless it is explicitly set by means of the GeomagneticField directive. Let us analyze some
examples (see also page 116):

GeomagneticField Off

With this instruction the effect of the magnetic field on the motion of the charged particles will not
be taken into account. However, the field will still be evaluated in order to determine the declination
angle, which is used to transform geographical azimuths into magnetic ones (see page 53).

GeomagneticField 32 uT -60 deg 2 deg

8The next generation of IGRF data will be released after the year 2020.

58 CHAPTER 3. STEERING THE SIMULATIONS

The preceding directive instructs AIRES to fully override the IGRF estimation with the values in-
dicated in the parameters, which respectively correspond to F, I and D (see section 2.1.5). Partial
overriding is also supported, like in the following instruction

GeomagneticField 32 uT

The field strength, F, will be set to the value indicated in the first parameter, while I and D will remain
as given by the IGRF model.

xz-plane Gaussian fluctuations, either absolute or relative, are also supported:

GeomagneticField 32 uT Fluctuation 500 nT
GeomagneticField On Fluctuation 10 %

Notice that fluctuations can be introduced with or without overriding the IGRF field components. It
is also possible to specify 0.1 Relative instead of 10 %.

When magnetic fluctuations are in effect, then the magnetic field used for each shower will be
different. Let B0 be the “central” value coming from the IGRF model and/or entered manually. Let
∆B be the specified fluctuations. Notice that in the case of relative fluctuations, ∆B is set using the
field strength B0: ∆B = B0∆Brel.

Then for each new shower, two independent, Gaussian-distributed random numbers, ∆Bx and
∆Bz , having mean zero and standard deviation ∆B/

√
2, are generated; and the magnetic field com-

ponents are set via
Bx = B0x + ∆Bx,
Bz = B0z + ∆Bz.

(3.11)

Notice, however, that the declination angle used for azimuth transformations will always come from
the central value, that is, is not affected by the fluctuations introduced.

3.3.6 Statistical sampling control

The thinning algorithm described in section 2.3 (page 25) makes use of several external parameters
that can be set by means of IDL directives. The thinning energy Eth is the most important param-
eter of the thinning algorithm. As illustrated in figure 3.1 (page 41), the directive ThinningEnergy
permits setting Eth, either absolutely or relative to the primary energy.

The directive ThinningWFactor allows controlling the maximum weight parameter W
(EM)
max de-

fined in section 2.3 (page 25). The specification

ThinningWFactor 2.5

sets the weight factor, Wf , of equation (2.23) to 2.5, to be used with electromagnetic particles.
Recommended values for Wf are in the range 0.1 to 50; the default value is 12. Setting Wf > 100

is practically equivalent to Wf →∞ (see section 2.3.3).9

9IMPORTANT: The statistical weight factor of the AIRES extended thinning algorithm is not equivalent to the param-
eter with the same name defined for AIRES 1.4.2 or earlier. Therefore, the recommended values placed in the AIRES 1.4.2
manual [18] do not apply for the current version.

CHAPTER 3. STEERING THE SIMULATIONS 59

The weight factor that is used with non electromagnetic particles, W
(H)
f , can also be set by the

user: The directive EMtoHadronWFRatio permits setting the ratio AEH defined in equation (2.24).
The default value AEH = 88 is normally adequate, but some applications may require performing
simulations with a different relation between electromagnetic and non electromagnetic weight factors,
and in such cases the mentioned directive is useful to change the ratio as needed.

3.3.7 Output table parameters

The output tables listed in appendix C (page 132) are automatically calculated during the simulations,
and the directives to retrieve these data will be explained in chapter 4 (page 69). Many of these tables
can be customized by means of IDL instructions.

The number of observing levels defined for the longitudinal tables (table numbers 1000 to 1999)
can be controlled using the IDL directive ObservingLevels, as already explained in section 3.2.5
(page 39).

The lateral distribution tables (table numbers 2000 to 2499), the energy distribution tables (table
numbers 2500 to 2999), and the mean arrival time distribution tables (table numbers 3000 to 3499)
are defined, by default, as histograms with 40 logarithmic bins (either radial or energy bins depending
on the distribution type), plus two additional “underflow” and “overflow” bins.

The IDL directives RLimsTables and ELimsTables allow to control the radial and energy bins,
respectively, as illustrated in the following examples:

RLimsTables 20 m 2 km
ELimsTables 2 MeV 1 TeV

The first directive sets the range for the standard lateral distributions. The lowest end of bin 1 (highest
end of bin 40) is set to 20 m (2 km). The “underflow” bin will thus correspond to all entries with
distances less than 20 m, while the “overflow” one to all entries beyond 2 km.

In a completely similar way, the second directive sets the lower and upper bounds for the 40 bin
energy distributions, and the respective “underflow” and “overflow” bins.

With the current version of AIRES it is possible to save the tables in a shower per shower basis,
besides the traditional average tables that have been always available. Since this may generate large
IDF or ADF files in certain cases, the mechanism of individual shower table saving is disabled by
default. The directive

PerShowerData Full

must be used to ensure that the individual shower tables are being saved.

3.3.8 Random number generator

The AIRES random number generator must be initialized before starting any set of simulations. The
default action is to use a internally generated seed, generated with an elementary random number
generator that uses the current clock and CPU usage registers. Therefore, different invocations of

60 CHAPTER 3. STEERING THE SIMULATIONS

AIRES with the same input directives, will generally originate different output data because of differ-
ent initializations of the random number generator.

The default behavior can be changed if needed. The directive RandomSeed allows the user to set
the random seed to a given number, or to get the seed from an already initialized task. These features
are illustrated in the following examples:

1. The directive

RandomSeed 0.1298004637

sets the random seed to a fixed constant. The number must be greater than zero and less than
one.

2. The directive

RandomSeed GetFrom otheridfile

extracts the seed used in the task that created the IDF file otheridfile, and uses it to initialize
the generator.

3.4 Input parameters for the interaction models

The expression interaction models identifies a series of subroutines and functions that contain the
actual implementations of the algorithms that control the propagation of particles. Such algorithms
emulate the physical rules associated with the different interactions that take place in an air shower.

As it is well-known, there are still many open problems in this area and therefore the interaction
models cannot be considered a crystallized part of the simulation programs. Furthermore, in the
design of the interaction models and external packages units shown in figure 1.1 (page 7), every effort
was made to make them easily replaceable, in order to be able to incorporate improved code to be
developed in the future.

The IDL directives that are going to be mentioned in this section allow the user to control different
model parameters. Such directives are defined from within the interaction model section, and for the
reasons explained in the preceding paragraph, they are of a changing nature: For AIRES versions
later than the current version 19.04.10 the model related directives may no longer be supported, be
replaced by alternative ones or their syntax be totally or partially changed.

3.4.1 External packages

The last versions of EPOS [6], QGSJET [7], and SIBYLL [11] hadronic collisions packages are
implemented in AIRES. For technical reasons they are compile-time implemented, and are available
by means of different executable programs: AiresS23 is a executable simulation program linked to
SIBYLL 2.3, etc.

CHAPTER 3. STEERING THE SIMULATIONS 61

The current version of AIRES (19.04.10) includes links to EPOS LHC and 1.99, QGSJET-II 04
and 03, and SIBYLL 2.3, 2.3c, and 2.1.

All the particle-nucleus and nucleus-nucleus interactions with projectile kinetic energy above a
certain threshold are processed using the external package, while the low energy ones are calculated
by means of the extended Hillas splitting algorithm [4, 28], or a built-in nuclear fragmentation model,
in the cases of hadron-nucleus or nucleus-nucleus collisions.

The IDL directive ExtCollModel is an On-Off switch that allows controlling the use of the ex-
ternal package (EPOS, QGSJET, or SIBYLL, depending on the executable program being used).
The minimum energy required for the external package to be invoked can be altered using directives
MinExtCollEnergy and/or MinExtNucCollEnergy, as in the following example:

MinExtCollEnergy 300 GeV
MinExtNucCollEnergy 500 GeV

AIRES supports also the directive ForceModelName that is useful to ensure that a given input data
set will be processed only with a determined simulation program. For instance, if an input data set
containing the instruction

ForceModelName QGSJET-II-04

is processed with other simulation program different from AiresQIIr04, the process will immediately
be aborted with an error message. When the directive is not used no check is performed and the
simulations can be started with any program.

The cross sections used to determine the collision mean free paths can also be controlled. In the
current version there are several sets of hadronic cross sections available, namely, Standard, EPOS,
QGSJET and SIBYLL (all versions) cross sections. The

The default mean free paths are the ones corresponding to the external hadronic package linked
to the simulation program. The following example illustrates how to alter the default settings:

MFPHadronic SIBYLL23c
MFPThreshold 120 GeV

These instructions imply that the “SIBYLL23c” mean free paths will be used for collisions with
energies over 120 GeV, while the standard mean free paths will be used for the ones with lower
energies.

The mean free path sets supported in AIRES 19.04.10are: Standard, EPOS, EPOS-LHC3400,
EPOS1990, QGSJET, QGSJET-II-04, QGSJET-II-03, SIBYLL, SIBYLL231, SIBYLL23c,
SIBYLL21. The generic names (EPOS, QGSJET, SIBYLL) refer to the sets associated with the
newest installed version of the respective hadronic models.

The previous directives also indicate that the nucleus-nucleus mean free paths will be evaluated
using special algorithms included within the external hadronic packages if the projectile’s energy per
nucleon falls above the specified threshold; otherwise the mean free path will be evaluated via a built-
in procedure that calculates it by scaling adequately the proton-nucleus mean free path corresponding

62 CHAPTER 3. STEERING THE SIMULATIONS

to the model being used. The directive ExtNucNucMFP allows to disable the call to the external
routine, and use the built-in algorithm for all projectile energies.

The hadron-nucleus/nucleus-nucleus and/or the photon-nucleus collisions can be disabled if de-
sired:

NuclCollisions Off
PhotoNuclear Off

These settings are intended to be used only for special purposes: The results obtained in such condi-
tions may be rather unphysical.

3.4.2 Other control parameters

There are several IDL instructions that allow controlling different parameters and/or processes of the
simulation algorithms. These IDL directives need not be used for normal operation. Furthermore, the
user should take into account that improper settings for some of the parameters associated with these
instructions may lead to unphysical results.

PropagatePrimary. Logical switch to control the initial propagation of the primary.

SetTimeAtInjection. Logical switch to control whether or not the shower time is set to zero at the
injection point. The shower clock can be set to zero at the injection point (default) or at the
moment of the first primary interaction.

GammaRoughCut, ElectronRoughCut. Threshold energies for “normal” propagation of gammas
and electrons, respectively. Particles with kinetic energies below those thresholds are “roughly”
propagated, that is, many processes are calculated only approximately, or are ignored at all.

ForceLowEDecays, ForceLowEAnnihilation. These directives control the kind of action to be ta-
ken when low energy particles that can decay or undergo annihilation reach the low energy
threshold.

LPMEffect. IDL switch to enable/disable the LPM [25, 30] effect. The default is LPMEffect On.

DielectricSuppression. IDL switch to enable/disable the dielectric suppression [25, 31] effect. The
default is DielectricSuppression On.

MuonBremsstrahlung. IDL switch to enable/disable the muon bremsstrahlung and muonic pair pro-
duction processes. The default is MuonBremsstrahlung On

AirZeff, AirAvgZ/A, AirRadLength. IDL directives associated with internal parameters. For a de-
tailed explanation see appendix B (page 106).

Since most of these IDL instructions are hidden directives (see page 48) the respective settings in
effect will not be included in the input data list, unless explicitly indicated by means of directive In-
putListing (see page 118). Additionally, warnings messages will be issued when using any directive
which may lead to simulations with unphysical results.

CHAPTER 3. STEERING THE SIMULATIONS 63

3.5 Special primary particles

In many cases of interest, it is necessary to simulate showers that cannot be described adequately
with the usual scheme of a single primary particle interacting with a nucleus in the atmosphere and
generating a set of secondaries to be propagated. Instead, one has that a particular set of interac-
tions that only affect the primary particle, originates a series of “normal” secondary particles that hit
the atmosphere and originate the corresponding cascades. In general, such special interactions are
not modeled adequately by AIRES propagating engine, but it is possible to overcome this difficulty
allowing the simulation program to start a shower with multiple “primary” particles which are the
secondaries coming out from the “special” interactions.

The following are examples where the mentioned scheme applies:

• An exotic cosmic particle (a cosmic neutrino, for instance) interacts and produces a series of
particles that can be normally propagated by AIRES.

• An electromagnetic particle interacts with the Earth’s magnetic field before reaching the at-
mosphere, and producing a pre-shower whose products finally reach the atmosphere and start
interacting with it.

• A cosmic particle disintegrates (before reaching the Earth) in two or more fragments that arrive
simultaneously in slightly distant points.

• Etc.

AIRES 19.04.10 allows the user to simulate showers initiated in such conditions. An external,
user provided, program will be responsible for generating the particles to be injected at the beginning
of the shower. This process is completely dynamic, and the sets of generated primary particles may
vary from shower to shower.

To implement such an interface is very simple. The user needs to: (i) Define the special particle
within the IDL instructions. (ii) Set up the external program that will be invoked (via a system call)
at the moment of starting a new showers.

3.5.1 Defining special particles

The AIRES IDL directives allow to specify particles by names (“proton”, “gamma”, etc.). The set of
known particle names can be expanded to include those special “particles” which need to be treated
separately.

Consider the following examples:

AddSpecialParticle myparticX Xpartsim
AddSpecialParticle myparticY Xpartsim type Y

The IDL directive AddSpecialParticle takes at least two arguments: (i) A special particle name that
uniquely identifies the added special particle, and (ii) The name of the executable module that will be
invoked when starting the showers initiated by the respective particles.

64 CHAPTER 3. STEERING THE SIMULATIONS

In the preceding example, two special particles, namely, myparticX and myparticY are defined
and associated to the same external module, Xpartsim. In the case of the definition of myparticY,
some arguments are specified (“ type Y”). Such arguments are passed (portably) to the module.

Once the special particle(s) are defined10, their names can be used as argument of the Primary-
Particle directive:

AddSpecialParticle myparticX Xpartsim
. . .
PrimaryEnergy 20 EeV
PrimaryParticle myparticX

Special particles can also be used in the case of mixed composition (see page 51), like in the
following example:

AddSpecialParticle SSP1 module_1
AddSpecialParticle SSP2 module_2
. . .
PrimaryParticle SSP1 0.2
PrimaryParticle SSP2 0.3
PrimaryParticle Proton 0.5

In this case the primary will be SSP1, SSP2, or proton with probabilities 20%, 30%, and 50%,
respectively.

3.5.2 The external executable modules

Every time a special primary shower is started, the simulation program will invoke the executable
module associated with the corresponding primary, defined using the AddSpecialParticle directive.
Such an executable program can be a FORTRAN, C or C++ program (or a shell script running it), and
must be capable of providing the calling module with the list of primary particles that will be added
to the particle stacks before starting the simulation of that shower.

The simulation program and the external module communicate via internal files in a way that is
transparent for the user and completely portable.

The AIRES object library includes a series of user-friendly routines (callable from FORTRAN, C
or C++) that ease the task of writing such external modules.

Figure 3.3 displays a brief FORTRAN program with the basic structure needed in every module
capable of building a list of primary particles to start the simulation of a shower.

The program starts with a call to routine speistart and ends with a call to speiend. It is essential
to maintain this structure in any external module: All the calls to any AIRES library routine must be
placed within the mentioned calls.

Once the interface is started, the system is ready to accept primary particles that will be added to
the primary particle list. The basic routine to add primaries to the list is spaddp0. For each invocation

10Up to ten different special particles can be defined for a given task.

CHAPTER 3. STEERING THE SIMULATIONS 65

c
c An example of an external module to process "special" primary
c particles.
c

program specialprim0
c

implicit none
c
c Declaration of variables retrieved when starting the interface
c with the calling program.
c

integer shower_number
double precision primary_energy
double precision default_injection_position(3)
double precision injection_depth, ground_depth
double precision ground_altitude, d_ground_inj
double precision shower_axis(3)

c
integer rc
double precision urandomt

c
c Some particle codes (AIRES coding system).
c

integer pipluscode, piminuscode
parameter (pipluscode = 11, piminuscode = -11)

c
c FIRST EXECUTABLE STATEMENT.
c
c Starting the AIRES-external module interface.
c

call speistart(shower_number, primary_energy,
+ default_injection_position, injection_depth,
+ ground_altitude, ground_depth,
+ d_ground_inj, shower_axis)

c
c Injecting two particles at the initial injection point, and in
c the direction of the shower axis.
c

e1 = primary_energy * urandomt(0.05d0)
e2 = primary_energy - e1

c
call spaddp0(pipluscode, e1, 1, 0.d0, 0.d0, 1.d0, 1.d0, rc)
call spaddp0(piminuscode, e2, 1, 0.d0, 0.d0, 1.d0, 1.d0, rc)

c
c Completing the main program-external module interchange.
c The integer argument of routine "speiend" is an integer return
c code passed to the calling program. 0 means normal return.
c

call speiend(0)
c

end

Figure 3.3. A sample module for processing special primary particles. The purpose of this example
is to illustrate the basic structure of a program to process the special primaries; the programmed
algorithm is not intended to have any validity from the physical point of view.

66 CHAPTER 3. STEERING THE SIMULATIONS

of this routine, the corresponding particle is added to the internal list of particles. There is no limit
in the number of primary particles that can be included in the mentioned list, but the sum of their
energies must not be larger than the primary energy specified in the input instructions and stored in
the variable primary_energy appearing in figure 3.3.

x

y

z

z

g

O

x

0

y

0

z

0

O

0

sh
ow

er
axi

s

Figure 3.4. The shower axis-injection point coordinate system, x′y′z′ (magenta), contrasted with the
AIRES coordinate system, xyz (green). The origin of the AIRES coordinate system, O, is located at
sea level, while O′ is located at the original shower injection point. zg is the ground altitude. The
z′-axis is parallel to the shower axis, the x′-axis is always horizontal, and the y′z′-plane contains
the z-axis.

Arguments number 3 to 6 of routine spaddp0 define the direction of motion of the corresponding
particle. Argument number 3 is an integer switch selecting the coordinate system to use and the
remaining quantities give the components of a vector, not necessarily normalized, pointing in the
direction of motion of the particle. There are two options for argument number 3 (variable csys in the
description of page 201):

0 To select the AIRES coordinate system defined in section 2.1.1 (page 9).

1 To select the shower axis-injection point system. This is a special coordinate system whose
z-axis is parallel to the shower axis and its origin is placed at the original injection point (which
remains uniquely determined by the shower zenith and azimuth angles and by the injection and
ground altitudes). In this coordinate system, illustrated in figure 3.4, the coordinates (0, 0, z′)
and the vector (0, 0, 1) indicate, respectively, the position and direction of motion of a particle
that moves along the shower axis and towards the ground.

CHAPTER 3. STEERING THE SIMULATIONS 67

The process is completed with the call to speiend. This ensures that all the relevant variables are
transmitted back to the main simulation program, which will recover the control after the external
module ends. Both speistart and speiend must be called only once within the entire external module.

Notice also that one of the AIRES random number routines, namely, urandomt (see page 213),
is used to evaluate the energy if the π mesons being included in the list of primary particles. The
random number generator is not initialized. Instead, its current status is passed by the main simula-
tion program to the external module, and read-in within speistart. As a consequence, the generated
random numbers will be different in different invocations of the external module. Routine speiend
writes back the final status of the random number generator, and it is recovered by the main simula-
tion program, so the numbers used in one and other program are always independent. If the AIRES
random number generator is not used within the external module, then there are no alteration in the
series of random numbers used by the main simulation program.

An actual external module to process special primaries will surely be much more complex than the
one of the preceding example. The user can provide special routines with the procedures needed for
that purpose, and use routines from the AIRES object library as well. Many of the modules described
in appendix D (page 140) can be used within special primary programs, in particular the ones directly
related with the special particle interface system, which provide a set of tools covering the needs of
the most common situations, namely:

Retrieval of environmental information. Routine speistart starts the AIRES-external module in-
terface and retrieves some basic variables, namely, shower number, primary energy, original
injection position (three coordinates), vertical atmospheric depth of the original injection point,
ground level altitude and vertical atmospheric depth, distance between the original injection
point and the ground level (measured along the shower axis), and unitary vector in the direction
of the shower axis. Besides these variables, it is possible (optionally) to retrieve additional ones
calling other routines included in the AIRES object library:

• speigetpars (page 205) returns the parameter string that can be (optionally) specified in
the IDL instruction that defines the corresponding special particle (see directive AddSpe-
cialParticle, page 108). The simulation program passes the argument string directly,
without making any special processing on it.

• speigetmodname (page 204) returns the name of the executable module specified in the
definition of the corresponding special particle.

• sprimname (page 211) returns the name of the special particle corresponding to the cur-
rent invocation of the external module.

• speitask (page 209) returns the current task name.

• spnshowers (page 210) returns three integers that correspond, respectively, to the total
number of showers assigned to the task, and the numbers of the first and last showers.
These quantities are related to the specifications entered with the directives TotalShowers

68 CHAPTER 3. STEERING THE SIMULATIONS

and FirstShowerNumber. The variable shower_number set when calling speistart (see
figure 3.3), will always be equal or larger (smaller) than the first (last) shower number.

Adding primary particles to the primary particle list. Routine spaddp0 appends to the particle
list the particle defined with the arguments used in the corresponding call, as illustrated in
the example of figure 3.3. Additionally, there are two other related library routines available,
namely, spaddpn (page 202) to append with a single call a set of various primary particles, and
spaddnull (page 200) to include null (unphysical) particles. A null particle is not included in
the simulations, but its energy is added to the global null particle energy counter. Nuclei can
be normally appended to the particle list. Nuclear codes can be conveniently evaluated using
routine nuclcode (page 189).

Changing the injection coordinates and time. After the initial call to speistart, the injection point
is set to the original injection point defined by the global parameters entered within the input
data (zenith and azimuth angles, etc.). The coordinates with respect to the AIRES coordinate
system of the original injection point are returned by speistart (this corresponds, in the example
of figure 3.3, to array default_injection_position). The injection coordinates and time can be
changed at any moment using routine spinjpoint (page 207).

Setting the point of first interaction. When using normal primary particles, AIRES evaluates au-
tomatically the atmospheric depth where the first major interaction takes place. This is not
possible in the case of a special particle when a series of primaries are injected before starting
the simulations; and the default action will be to set the first interaction at the original injection
point, regardless whether that points corresponds or not to an actual point of interaction. As
an alternative to the default action, it is possible to set manually the coordinates of the point
of first interaction using routine sp1stint (page 199). Of course, this affects only the statistical
analysis of the first interaction depth, and has no effect on the propagation of the particles.

Version of external module. The user can assign a version number to the external module. This
version number must be passed to the main program by means of routine speimv (page 206).
The version number is stored with all the information associated with the current shower, in
particular in the compressed output files. It is strongly recommended to assign version numbers
to external modules that will be used in production simulations.

We recall here that all the calls to every one of the routines listed in the previous paragraphs must
be placed after the call to speistart and before the call to speiend.

The IDL directive SpecialParticLog allows to print information about the primary particles that
are injected after each invocation of the external module. Notice that the default is to print no infor-
mation in the log (extension lgf) file.

Chapter 4

Managing AIRES output data

4.1 Using the summary program AiresSry

Every time a task is completed, the simulation programs invoke some output procedures that create
a summary file displaying a series of results related with the already finished simulations; a task
summary script file can also be created. As it will be discussed in this section, there are several IDL
directives that allow controlling such AIRES output data.

The summary program, AiresSry, which is part of the AIRES system allows the user to process
the simulation data contained within the internal dump file (IDF) or, equivalently, the portable dump
file (ADF), and retrieve any of the available observables, similarly as the main simulation programs
do. It is worthwhile mentioning that AiresSry can be used before as well as after the simulations are
finished. In the first case it is possible to monitor the development of the simulation task while the
former alternative is most convenient for analysis tasks. Backwards compatibility is always ensured:
Old IDF’s or ADF’s generated with any previous version of AIRES can be processed normally using
AiresSry.1

Many observables are of “tabular” nature, that is, an array of data whose elements correspond to
a set of values of a determined variable. For example, the longitudinal development of the number
of gamma rays is represented by an array whose elements give the number of gamma rays that have
crossed the different observing levels, as a function of the observing level altitude.

Most of the tabular observables commonly defined are automatically calculated by the simulation
programs. The corresponding data arrays are stored in the IDF file and can be retrieved in several
ways (see below). The complete list of currently available output data tables (more than 300) is
placed in appendix C (page 132).

1Notice, however, that a set of simulations created using a determined version of AIRES must be ended using the same
version.

69

70 CHAPTER 4. MANAGING AIRES OUTPUT DATA

4.1.1 The summary file

The summary file (extension .sry) can be divided into two parts: (i) The general section, which
includes data on the evolution of the simulations as well as some basic shower observables. (ii)
Tables section, containing data tables accordingly to user’s specifications.

The summary file is generally written as a plain text file (this is the default). However, the
IDL instruction LaTeX permits generating summaries that can be processed using the LATEX type-
setting system. If the LATEX switch is enabled, then the AIRES system will generate two files, namely
taskname.sry and taskname.tex. The last of these two files can be normally processed by a standard
LATEX system.

On the other hand, it is also possible to instruct any of the AIRES programs not to write the
summary file. To do this, just include the directive Summary Off into the input data stream.

General section

The general section of the summary file begins with computer related information (task and user
identification, CPU time usage, etc.). It also includes information about the input parameters used,
and reports on the number of particle entries processed at each stack. A complete report on stack
usage can be obtained using the IDL directive

StackInformation On

Then general information about the number and energy of particles reaching ground is displayed.
For all the output observables, its mean2, standard deviation, root mean square error of the mean,
minimum and maximum, are reported.

The IDL directive OutputListing Full will generate an additional section containing information
(generally of computational nature) on several output quantities defined for different algorithms.

The general section concludes with reports on the vertical depth of the first interaction, and on the
location of the shower maximum.

The data collected for the longitudinal development of all charged particles, that is, the number
of charged particles Nc(i) that crossed the observing level i, for all i = 1, . . . , No, is used to estimate
the shower maximum, Xmax, here defined as the vertical depth of the point where the number of
charged particles reaches its maximum. The number of charged particles at the maximum, Nmax is
also evaluated.

The estimation of the shower maximum is done by means of a 4-parameter fit to the Gaisser-

2The statistical analysis is made in a shower-per-shower basis.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 71

Hillas function [35]3

Nch(X) = Nmax

(
X −X0

Xmax −X0

)[(Xmax−X0)/λ]
exp

(
Xmax −X

λ

)
, X ≥ X0. (4.1)

Xmax, Nmax, X0 and λ are the free parameters to be adjusted. Notice that Nch(X0) = 0,4 and that
Nch(X) is taken as 0 for X < X0.

A weighted nonlinear least squares fit performed with the aid of the very robust Levenberg-
Mardquardt algorithm –as implemented in the public domain software library Netlib [16]– is done
after the simulation of every individual shower is completed. The values reported in the summary file
correspond to the plain average of all the fits with “reasonable” results (converged fits). The number
of such converged fits is also reported.

Tables section

The output data tables listed in appendix C (page 132) that are automatically calculated during the
simulations can be totally or partially included within the output summary file. An index of such
tables can also be printed using the directive TableIndex

The PrintTables directive must be used to include one or more tables within the output summary
file. Its syntax is shown in the following example:

PrintTables 1291 Options RM

This instruction orders AIRES to “print” table 1291 (longitudinal development of all charged par-
ticles) into the summary file. The options used are: R, to list RMS errors of the means, and M to
include maximum and minimum data as numerical entries. For a detailed explanation of the directive
PrintTables see page 124.

4.1.2 Exporting data

An interesting feature of both the summary and the main simulation programs, is that they are able to
generate output files containing any one of the tables listed in appendix C (page 132). Let us consider,

3Our definition of the Gaisser-Hillas function involves vertical depths. Some authors, however, use slant depths instead.
Both definitions can be used to parameterize the shower profile. Furthermore, notice that in the plane Earth approximation
both “vertical” and “slant” forms are equivalent, provided the parameters are adequately interpreted, that is, taking into
account the factor cos Θ of equation (2.9). If the Earth’s curvature is taken into account, the translations between vertical
and slant quantities must be done numerically (see pages 14 and 214).

4The depth X0 refers to the point where the Gaisser-Hillas function is zero, and is not equal and not even necessarily
related to the depth of the first interaction, noted X1 in this manual.

72 CHAPTER 4. MANAGING AIRES OUTPUT DATA

for instance, the following IDL instructions:

Task mytask
Summary Off
Export 1205 1211
Export 1293 Option a
Export 2001 Options ds
Export 2791 2793 Options ML
End

Here mytask is a string that represents an already finished or currently running task. The Summary
Off directives disables the summary file. This is, of course, optional, but might be useful when the
user is just interested in creating table files.

The first ExportTables directive (the abbreviated name will be correctly interpreted by any of the
AIRES main programs) indicates that all the tables whose numbers are in the range [1205, 1211] must
be exported with the default options. Looking at the listing in appendix C (page 132), it comes out
that the involved tables are tables number 1205, 1207 and 1211.

The second export directive instruct AIRES to export table 1211 with the option of listing the
slant depths of the observing levels, that is, measured along the shower axis (equation (2.8)). By
default (Option r) all atmospheric depths listed within exported tables are vertical depths.

In the second export directive, the option string ds modifies the default settings. d indicates
that the particle numbers must be normalized to particle densities, expressed in particles/m2; and s
suppresses the file header (only the tables will be written). This last option may be useful when the
exported files are read by other applications (piped). Suppressing the file header, however, may lead
to not understandable files, especially if they are not processed at the moment they are produced. It is
therefore recommended to always keep such information; and it must be also taken into account that
all the header lines are “commented out” by means of a leading comment character which defaults to
“#”, but can be changed by means of the directive CommentCharacter (see page 110).

In the last example, the energy distributions 2791, 2792 and 2793 are exported. The option M
indicates that energies must be expressed in MeV (the default is GeV); while L indicates that the cor-
responding data are normalized to dN/d log10 E distributions. The alternative option l corresponds
to dN/d ln E normalization.

To process the preceding code, it might be useful to edit a small text file containing them and then
use –for instance– the summary program to process it:

AiresSry < myfile.inp

The files mytask.t1205, mytask.t1207, . . . , etc., will be created. If such files already exist, they will
be overwritten.

If the simulations that generated the data being processes were run with the PerShowerData op-
tion Full (see section 3.3.7), then it is possible to export single shower tables by placing the directive

ExportPerShower

CHAPTER 4. MANAGING AIRES OUTPUT DATA 73

together with the ExportTables one(s). Returning to our previous example, if such directive is placed
inside the file myfile.inp, then for each one of the exported tables, the files

mytask.tnnnn
mytask_s0001.tnnnn
mytask_s0002.tnnnn
. . .

will be created, corresponding respectively to the usual average table, and the tables for shower 1, 2,
etc.

4.1.3 The task summary script file

The task summary script file file (extension .tss) is a text file containing information about the main
input and output parameters of the simulation, in a format suitable for further processing by other
programs.

The format of this file is very simple: Each data item is written using a single line, in the format

Keyword = value

Some comments are included to make the file more human readable. The comment lines begin with
a comment character (‘#’ or the character set with the CommentCharacter directive).

In figure 4.1 a typical TSS file is displayed. Some of the records were not displayed for brevity.
The first data items correspond to the version of AIRES used for the simulations, and the units cor-
responding to different quantities written in the file. The general data, basic and additional input
parameters, and miscellaneous sections contain the current values of all the input parameters. The
last section contains a summary of shower observables. Using one line per shower, a series of shower
output data is displayed. The ShowerPerShowerKey line gives the key with the meaning of each
one of the columns of the shower data lines, starting with the primary code (key PrCode) for the first
item after the equal sign, and continuing until completing all the following items:

1 PrCode Primary particle code
2 PrEgy Primary energy
3 Zenith Shower zenith angle
4 Azim Shower azimuth angle
5 X1v Vertical depth of first interaction
6 Xmaxv Vertical depth of shower maximum
7 Nmax Number of particles at shower maximum
8 X0v Fitted parameter X0 (vertical) of Gaisser-Hillas function (equation (4.1))
9 Lambda Fitted parameter λ (vertical) of Gaisser-Hillas function (equation (4.1))

10 SofSqr Normalized sum of squares (equation (D.1)) from the longitudinal profile fit
11 FitRc Return code of the longitudinal profile fit

By default, AIRES does not create any task summary script file. The directive TSSFile must be
used to enable this feature.

74 CHAPTER 4. MANAGING AIRES OUTPUT DATA

AIRES TSS --- version V.V.V
#>>>
#>>> This is AIRES version V.V.V (dd/Mmm/yyyy)
#>>> (Compiled by . . .)
#>>> USER: xxxxx, HOST: xxxxx, DATE: dd/Mmm/yyyy
#>>>
#
TSS file for task mytask
#
#
Program and compilation parameters.
#
AiresVersion = V.V.V
#
Units
#
LengthUnit = m
TimeUnit = sec
EnergyUnit = GeV
DepthUnit = g/cm2
AngleUnit = deg
MagneticFieldUnit = nT
#
General data
#
TaskName = mytask
TaskVersion = 0
#
TotalShowers = 3
CompletedShowers = 3
. . .
. . . (Other general data)
. . .
#
Basic Input Parameters.
#
Site = Site00
SiteLatitude = 0.000000
SiteLongitude = 0.000000
EventDate = dd/Mmm/yyyy
#
NumberOfDifferentPrimaries = 1
PrimaryParticle = Proton
PrimaryParticleCode = 31
. . .
. . . (Other task input parameters)
. . .
#
Parameters relative to each shower
#
ShowerPerShowerKey = PrCode PrEgy Zenith Azim . . .
#
DataSh000001 = 31 350000. 0.00000 0.00000 . . .
DataSh000002 = 31 350000. 0.00000 0.00000 . . .
DataSh000003 = 31 350000. 0.00000 0.00000 . . .
#
End of tss file
#

Figure 4.1. Sample AIRES task summary script (TSS) file.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 75

4.2 Processing compressed particle data files

Like other simulation systems [1, 36], AIRES can produce output files containing detailed infor-
mation about the particles generated during the simulations. The well-known fact that that detailed
information generates huge amounts of data has been especially taken into account in the design of
AIRES, which includes an ad hoc data compressing algorithm to save file space.

A detailed explanation of the compressing algorithm –a rather technical matter– is beyond the
scope of this manual. We shall limit ourselves to briefly list its main characteristics:

Format. The compressed files are plain text files that can be generated in any computer and copied
and processed in any other one. This is valid even if the machines do not have the same oper-
ating system and/or do not use the same character codes (for example non-ASCII machines).

Organization. The files contain a header with data related to its structure and the conditions of the
simulation. The particle data section represents the bulk of the file and, in general, the records
corresponding to any one of the simulated showers are delimited by “beginning of shower” and
“end of shower” records. There is practically no limit in the number of showers that can be
included in a single file.5 On the other hand, groups of showers can be saved into separate files,
up to the limit of storing each shower in a different file (see page 127).

Compression rate. The data compression algorithms were designed to take profit of the physical
properties of the quantities being stored. This involves information about lower and upper
bounds for a variable, possibility of subtracting a given fixed value6, etc. Precision requirements
were also taken into account, imposing a minimum of five significant figures in most cases.
To give an idea of the size of compressed records, let us consider the default ground particle
record (see below) whose fields are: Particle code, logarithm of the energy, logarithm of the
distance to the core, polar angle in the ground plane, arrival time, x and y components of the
direction of motion, and statistical weight. This record thus has one integer field and six real
ones, and its length is 18 characters (bytes). This figure should be contrasted with a standard
FORTRAN internal write statement with single precision for real variables, which generates 28
data bytes when writing the same fields. Taking into account that such records usually include
additional formatting fields, the compression rate of AIRES algorithm compared with standard
unformatted FORTRAN i/o should be larger than 36%.

It is worthwhile mentioning the the AIRES package includes a library of subroutines, namely,
the AIRES object library, which contains many routines to read and process the compressed output
files. Backwards compatibility is always ensured: Old compressed files generated with any previous
version of AIRES can be read normally using the library routines.

5It is possible to store up to 759375 showers in a single compressed file.
6This refers to internal operations which do not alter any user-level results.

76 CHAPTER 4. MANAGING AIRES OUTPUT DATA

Field Name Description
Integer 1 Primary particle code Stores the code of the primary particle.

2 Shower number Shower number. By default, the first
shower is labeled with the number 1, but
the user can manually set the first shower
number by means of the IDL directive
FirstShowerNumber (see page 114).

3–8 Starting date and time Six fields containing, respectively, the
year, month, day, hours, minutes and
seconds corresponding to the beginning
of the simulation of the corresponding
shower.

Real 1 Primary energy (GeV) (log) The logarithm of the primary particle’s
energy.

2 Primary zenith angle (deg) The zenith angle of the primary particle.
3 Primary azimuth angle (deg) The azimuth angle of the primary parti-

cle.
4 Thinning energy (GeV) The absolute thinning energy used for

the respective shower.
5 First interaction depth (g/cm2) The vertical depth of the point where the

first interaction took place, X1.
6 Central injection altitude (m) The z-coordinate of the primary’s injec-

tion point (see figure 2.1).
7 Global time shift (sec) The time t0 required for a particle mov-

ing along the shower axis at the speed
of light, to go from the injection point to
the ground level.

Table 4.1. Fields contained in the “beginning of shower” record of compressed particle files. The
structure of this record does not depend on the compile-time option selected for the particle record.

4.2.1 Customizing the compressed files

Two kinds of compressed files are implemented in the current version of AIRES (19.04.10):

Ground particle file. (Extension .grdpcles) This file contains records with data of particles that
reached the ground surface.

Longitudinal tracking particle file. (Extension .lgtpcles) Compressed file containing detailed data
related with particles crossing the predefined observing levels (see section 2.2.3).

CHAPTER 4. MANAGING AIRES OUTPUT DATA 77

Ground particle file

There are three basic types of data records in this file: “Beginning of shower” record, “end of shower”
record and particle record (also referred as default record). The “external primary particle” and “spe-
cial primary trailer record” are also defined. These last two records are used only in connection with
the special primary particles described in section 3.5 (page 63).

All the particle records written out during the simulation of a single shower will appear in the file
preceded by a beginning of shower record, and followed by the corresponding “end of shower” one.

The fields that make the beginning (end) of shower record are listed in table 4.1 (4.2). Tables 4.3
and 4.4 describe the fields of the special primary related records. In these and in any other records,
the data fields can be classified in integer and real fields.

The fields contained in such delimiting records account for general air shower parameters or
observables and were included for special analysis tasks.

In the case of showers initiated by special primary particles (see section 3.5), the “Primary parti-
cle” code of the corresponding “beginning of shower” record will not correspond to a standard particle
code. Instead, the returned code will be a negative integer with an absolute value slightly smaller than
100000.7

In those cases, the “beginning of shower” record will be followed by a series of “external primary
particle” records (one for each injected primary particle). This series ends with a “special primary
trailer record” which will precede the default particle records written for that shower.

The fields included in the default records, associated with particle data, can be selected at compile
time among the various available alternatives. The installation configuration file (see appendix A)
contains detailed instructions on how to select the particle record options.

The most relevant physical properties of the ground particles can be saved in the ground com-
pressed file, namely,

Particle code. An integer code that identifies the particle.

Energy. The logarithm of the kinetic energy of the particle.

Coordinates. The polar coordinates (R, φ) of the particle at ground, measured from the intersection
of the shower axis with the ground surface. R is the distance to the core and φ is the angle with
respect to the x-axis.

Direction of motion. The x and y components, ux, uy, of the unitary vector u which indicates the
particle’s direction of motion. The uz component must be negative for the particles reaching
ground because such particles move downwards. It can be calculated via:

uz = −
√

1− u2
x − u2

y. (4.2)

7The library routine crospcode is the adequate one to manage such special particle codes.

78 CHAPTER 4. MANAGING AIRES OUTPUT DATA

Field Name Description
Integer 1 Shower number Shower number (matching the shower

number of the corresponding “beginning
of shower” record).

2 Xmax fit return code Integer code returned by the Xmax and
Nmax fitting routine described in section
4.1 (page 69).

3–8 Ending date and time Six fields containing, respectively, the
year, month, day, hours, minutes and
seconds corresponding to the end of the
simulation of the corresponding shower.

Real 1 Total number of shower particles Total number of particles processed dur-
ing the simulation of the corresponding
shower.

2 Total number of lost particles Total number particles that went outside
the region of interest for the simulations.

3 Number of low energy particles Total number of particles whose kinetic
energies fell below the corresponding
thresholds.

4 Number of particles reaching
ground

Total number of particles that reached
the ground level, including also those
particles not saved in the compressed
file.

5 Total number of unphysical
particles

Number of “particles” generated by spe-
cial procedures –like the splitting algo-
rithm, for example– which cannot be as-
sociated with physical particles. This
number is generally very small.

6 Total number of neutrinos Total number of neutrinos (νe, ν̄e, νµ,
ν̄µ) generated during the simulation of
the current shower.

7 Particles too near to the shower
core

Number of particles that were not saved
in the compressed file because they were
too near to the shower axis (see text).

8 Particles in the resampling region Number of particles that were processed
with the resampling algorithm (see text).

Table 4.2. Fields contained in the “end of shower” record of compressed particle files. The structure
of this record does not depend on the compile-time option selected for the particle record.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 79

Field Name Description
Real 9 Particles too far from the shower

core
Number of particles that were not saved
in the compressed file because they were
too far from the shower axis (see text).

10 Shower maximum depth (Xmax)
(g/cm2)

Vertical depth of the point where the
number of charged particles is maxi-
mum, Xmax, obtained from a fit to the
simulation data (see section 4.1).

11 Total charged particles at shower
maximum

Number of charged particles at Xmax,
Nmax, calculated as explained in section
4.1 (page 69).

12 Energy of lost particles (GeV) Total energy of the particles of real field
number 2.

13 Energy of low-energy particles Total energy of the particles of real field
number 3.

14 Energy of ground particles (GeV) Total energy of the particles of real field
number 4.

15 Energy of unphysical particles
(GeV)

Total energy of the particles of real field
number 5.

16 Energy of neutrinos (GeV) Total energy of the particles of real field
number 6.

17 Energy lost in the air (GeV) Total amount of energy lost by contin-
uous medium losses (ionization losses)
due to charged particles moving through
the air.

18 Energy of particles too near to the
core

Total energy (in GeV) of the particles of
real field number 7. This field is not de-
fined for the longitudinal tracking parti-
cle file.

19 Energy of resampled particles Total energy (in GeV) of the particles of
real field number 8. This field is not de-
fined for the longitudinal tracking parti-
cle file.

20 Energy of particles too far from the
core

Total energy (in GeV) of the particles of
real field number 9. This field is not de-
fined for the longitudinal tracking parti-
cle file.

21 CPU time (sec) Amount of processor time required for
the simulation of the current shower.

Table 4.2. (continued)

80 CHAPTER 4. MANAGING AIRES OUTPUT DATA

Field Name Comment
Integer 1 Particle code Stores the code of the corresponding pri-

mary particle.

Real 1 Energy (GeV) (log) The logarithm of the corresponding pri-
mary particle’s energy.

2 Direction of motion (x component) With respect to the AIRES coordinate
system (see page 9).

3 Direction of motion (y component)
4 Direction of motion (z component)
5 X coordinate (m) Particle injection coordinate, with re-

spect to the AIRES coordinate system
(see page 9).

6 Y coordinate (m)
7 Z coordinate (m)
8 Injection depth (g/cm2)
9 Injection time (ns)

10 Particle weight Initial statistical weight of the corre-
sponding particle.

Table 4.3. Fields contained in the “external primary particle” record of compressed particle files.
The structure of this record does not depend on the compile-time option selected for the particle
record.

Field Name Description
Integer 1 Version of external module User-settable integer in the range

[0, 759375].
Real 1 Total number of primaries Total number of primary particles.

2 Unweighted primary entries Unweighted number of primary entries.
3 Total energy of primary particles

(GeV)
Total energy of primary particles
(weighted).

Table 4.4. Fields contained in the “special primary trailer record” of compressed particle files. The
structure of this record does not depend on the compile-time option selected for the particle record.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 81

Arrival time. The saved quantity is the arrival time delay t − t0, where t is the absolute time (mea-
sured from the beginning of the shower), and t0 is the global time shift described in table 4.1
(page 76).

Particle weight. The statistical weight of the particle (see section 2.3).

Creation depth. The vertical atmospheric depth of the point where the particle was inserted into the
simulating program’s stacks.

Parent particle code. The code of the parent particle that generated (after a decay for example) the
corrent one.

Parent particle energy. The logarithm of the kinetic energy of the parent particle.

Last hadronic depth. The vertical atmospheric depth corresponding to the last hadronic interaction
suffered by the particle or by one of its ancestors.

Last hadronic projectile code. The particle code corresponding to the projectile of the last hadronic
interaction suffered by the particle or by one of its ancestors.

Last hadronic projectile energy. The logarithm of the kinetic energy of the already mentioned pro-
jectile particle.

For each one of these quantities, a corresponding record field is defined. The complete list of
fields is placed in table 4.5 (page 82). As mentioned previously, there are several record formats each
one including a different subset of all the available fields.

In contrast with the beginning of shower and end of shower records, a given field of the particle
record can be assigned different field numbers. As it will be seen below in this chapter, this does not
affect the user’s processing of compressed files, which can be done independently of the field number
assignments.

There are specific IDL directives that can control the particles that are actually saved in the ground
particle file.

To start with, let us consider the directives RLimsFile and ResamplingRatio, whose syntax is

RLimsFile grdpcles rmin rmax
ResamplingRatio sr

grdpcles identifies the file the directive refers to and rmin and rmax represent length specifications
(0 < rmin < rmax). sr is a real number (sr ≥ 1).

Such directives instruct AIRES to save unconditionally those particles whose distances to the
shower axis lie within the interval [rmin, rmax].

On the other hand, all the particles whose distances to the shower axis are smaller than

r0 = rmin
sr

(4.3)

82 CHAPTER 4. MANAGING AIRES OUTPUT DATA

Field Name
short normal long xlong

Integer 1 1 1 1 Particle code
– – – 2 Parent particle code
– – – 3 Last hadronic projectile code

Real – – – 1 Parent particle energy (GeV) (log)
– – – 2 Last hadronic proj. energy (GeV) (log)
1 1 1 3 Energy (GeV) (log)
2 2 2 4 Distance from the core (m) (log)
3 3 3 5 Ground plane polar angle (radians)
– 4 4 6 Direction of motion (x component)
– 5 5 7 Direction of motion (y component)
4 6 6 8 Arrival time delay (ns)
5 7 7 9 Particle weight
– – 8 10 Particle creation depth (g/cm2)
– – 9 11 Last hadronic interaction depth (g/cm2)

Table 4.5. Fields contained in the particle records of compressed ground particle files. The field
numbers for the different particle records selectable at compilation time (see text), named short,
normal, long, and xlong records, are tabulated. Notice that a given field can have different field
numbers.

(r0 is, by definition, not larger than rmin) are not included in the ground file, but their number and
energy are recorded and the totals are included in the “end of shower record” (fields 7, 9, 18, and 20).

Finally, all the particles whose distances r to the shower axis lie in the interval [r0, rmin] are
processed by a resampling algorithm which conditionally keeps the particles accordingly with the
following rules: (i) “Nonnumerous” particles –like pions, nucleons, etc.– are always saved. (ii) For
every “numerous” particle –i.e., gammas, electrons, positrons and muons– in the mentioned region,
the acceptance probability is8

ps =
(

r

rmin

)2
. (4.4)

(iii) The statistical weights of the accepted particles are increased via

w′ = w

ps
, (4.5)

in order to keep unbiased the sampling algorithm.
The total number and energy of particles that fall within the resampling area, are recorded in the

“end of shower record” (fields 8 and 19).
The SaveInFile (SaveNotInFile) directive permits including (excluding) one or more particle

kinds into (from) the compressed file. Section 3.2.5 (page 39) contains several illustrative examples
8The expression of the acceptance probability is inspired in a suggestion by P. Billoir [37].

CHAPTER 4. MANAGING AIRES OUTPUT DATA 83

Field Name
short norm norm long x- x-x-

(a) (b) long long
Integer 1 1 1 1 1 1 Particle code

2 2 2 2 2 2 Observing levels crossed
– – – – – 3 Parent particle code
– – – – – 4 Last hadronic projectile code

Real – – – – – 1 Parent particle energy (GeV) (log)
– – – – – 2 Last hadronic proj. energy (GeV) (log)
– 1 – 1 1 3 Energy (GeV) (log)
– – 1 2 2 4 Direction of motion (x component)
– – 2 3 3 5 Direction of motion (y component)
1 2 3 4 4 6 Particle weight
2 3 4 5 5 7 Crossing time delay (ns)
3 4 5 6 6 8 X coordinate (m)
4 5 6 7 7 9 Y coordinate (m)
– – – – 8 10 Particle creation depth (g/cm2)
– – – – 9 11 Last hadronic interaction depth (g/cm2)

Table 4.6. Fields contained in the particle records of compressed longitudinal tracking particle files.
The field numbers for the different particle records selectable at compilation time (see text), named
short, normal (a), normal (b), long, extra-long, and extra-extra-long records, are tabulated. Notice
that a given field can have different field numbers.

on how to use them.
Notice that by default, all particle kinds are enabled to be saved into the ground particle file.

Longitudinal tracking particle file

The structure of the longitudinal tracking particle file is very similar to the already described ground
particle file: Both files have virtually the same “beginning of shower”, “end of shower”, “external
primary particle”, and “special primary trailer” records; and there are alternative formats for the
particle records.

For that reason, it is highly recommended to the reader be familiar with the contents of the previ-
ous section describing the ground particle file before proceeding to read the present section. We shall
limit here to briefly describe only those aspects that are somehow different in both files.

The longitudinal tracking particle file contains records storing detailed information about the
particles that cross the defined observing levels. Since the observing levels are generally located at
altitudes that include the shower maximum, and due to the fact that a single particle can cross more
than one observing level during its life, it is clear that the longitudinal files can potentially be much
larger than the average ground particle files.

84 CHAPTER 4. MANAGING AIRES OUTPUT DATA

For that reason, a special effort was made to save as much space as possible, and various record
formats were defined to allow the user to select just the necessary fields. The record format selection
can be done during installation, following the instructions placed in appendix A (page 101). Table
4.6 (page 83) lists all the defined data fields for the different default records.

The second integer field, named “Observing levels crossed” contains information about the ob-
serving levels the particle has crossed, and simultaneously about its direction of motion.

Let No (No ≤ 510) be the number of defined observing levels. At a certain monitoring operation,
a given particle crosses several observing levels from level if to level il (il may be equal to if). Let
uz be the z-component of the particle’s direction of motion. If uz > 0 (uz < 0) the particle goes
upwards (downwards), and therefore if ≥ il (if ≤ il).

All this information is encoded in a single integer number called the crossed observing levels key,
L, defined by the following equation:

L = if + 512 il + 5122 sud (4.6)

where

sud =
{

1 if uz > 0
0 if uz ≤ 0 (4.7)

The three variables that appear in the right hand side of equation (4.6) can be easily reconstructed
when L is known (see page 92).

The real fields listed in table 4.6 (page 83) are defined similarly to the corresponding ground
particle record fields, with the exception of the x and y coordinates which are defined as follows:

Coordinates. The (x, y) coordinates are the Cartesian coordinates of the point where the particle
crossed the level if , measured from the intersection between the shower axis and the cor-
responding observing level’s surface.

Time delay. Defined as the difference t − tf where t is the particle’s absolute time and tf is the
time required for a particle moving along the shower axis at the speed of light to go from the
injection point to observing level if .

The IDL directives RLimsFile, ResamplingRatio, SaveInFile and SaveNotInFile can be used
with longitudinal files to control when a particle must be saved or not. The last two directives do not
present special difficulties, and work as explained in section 3.2.5 (page 39).

On the other hand, the directives9

RLimsFile lgtpcles rmin rmax
ResamplingRatio sr

define three parameters, rmin, rmax and sr, that are used to determine whether a particle record must
be saved or not. The rules are the following:

9Notice that the parameter controlled by directive ResamplingRatio is global, that is, its last setting applies to every
one of the compressed files in use.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 85

1. Let Xc = 0.8 Xi + 0.2 Xg, where Xi and Xg are the vertical injection and ground depths,
respectively.

2. For each observing level i, i = 1, . . . , No, let

ri =

0 if X
(i)
o ≤ Xc(

X
(i)
o −Xc

Xg −Xc

)
rmin if Xc < X

(i)
o < Xg

rmin if X
(i)
o ≥ Xg

(4.8)

where X
(i)
o is the vertical depth of observing level i; and let r0i = ri/sr.

3. Any particle crossing observing levels will not be saved in the longitudinal file if one of the
following conditions is true:

(a) |x| < r0i and |y| < r0i.

(b) |x| > rmax or |y| > rmax.

x and y are the Cartesian coordinates of the particle at observing level if , measured from the
intersection between the shower axis and the corresponding observing level.

4. Gammas, electrons, positrons and muons crossing observing levels and verifying the two fol-
lowing conditions

(a) |x| < rmin and |y| < rmin.

(b) |x| > r0i or |y| > r0i.

(in the same notation of the previous point), will be conditionally kept, with probability and
reweighting factor given by equations (4.4) and (4.5), respectively.

5. All the particles not fulfilling the conditions of the preceding points will be unconditionally
saved in the file.

These rules set varying limits for the zone of excluded particles. In the zone near the shower axis,
all particles crossing observing levels placed above Xc will be saved, then the exclusion zone enlarges
proportionally to the depth of the observing level, reaching the value indicated in the RLimsFile
directive at the ground depth. Notice that Xc divides the complete shower path (as measured in
atmospheric depth) into two, upper-lower, 20%-80%, zones.

The number of defined observing levels affects the degree of detail of the monitoring of the
longitudinal shower development, and some applications usually require that this number be as large
as possible. On the other hand, such setting may lead to the generation of very big longitudinal particle
files since a large number of data records are generated as long as every particle crosses the observing
levels. To overcome this difficulty, AIRES includes a selection mechanism to avoid including in the

86 CHAPTER 4. MANAGING AIRES OUTPUT DATA

compressed file the information related with all the defined observing levels. Consider the following
illustrative example:

ObservingLevels 100
SaveInFile lgtpcles e+ e-
RecordObsLevels None
RecordObsLevels 1
RecordObsLevels 4
RecordObsLevels 10 90 10
RecordObsLevels Not 20

The first directive sets the number of observing levels to 100, and the second one enables particle
saving in the longitudinal particle tracking file. In this case only electrons and positrons will be
recorded (Notice that the longitudinal file is disabled by default, and therefore it is necessary to use
unless one SaveInFile instruction to enable it). The default action is to record particles crossing
any of the defined observing levels, and the remaining instructions are placed to override this default
setting. The directive RecordObsLevels None eliminates all the defined observing levels from the
set of levels to be taken into account to save particle records into the compressed file. The actions of
the instructions that follow are, respectively: Mark level 1 for recording particles crossing it; idem
level 4; idem all levels from 10 to 90 in steps of 10 levels; unmark level 20. The resulting set of
marked levels is {1, 4, 10, 30, 40, 50, 60, 70, 80, 90}.

4.2.2 Using the AIRES object library

The AIRES object library is a set of routines designed with the main purpose of providing adequate
tools to analyze the data saved in the compressed output files.

Appendix D (page 140) explains in detail the contents of the library and how to use it. In this
section some illustrative examples are presented.

From now on we are going to assume that the AIRES file is being processed by a program,
provided by the user and similar to the demonstration programs that are included with the AIRES
software distributions.

We are going to use FORTRAN in our examples, but this is not a restriction since the AIRES
library includes routines for a C interface, which allow the C user to fully exploit the library’s re-
sources.

Output particle codes

Every analysis program must begin with a call to routine ciorinit. This routines sets up the environ-
ment where the library routines can work adequately.

This routine permits setting the particle coding system that the user wants to work with. It is
possible to select either the AIRES coding system already described in section 2.2.1 (page 17), or
other usual coding systems. The coding systems known by AIRES 19.04.10 are the following:

1. Aires internal coding.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 87

Particle Codes
AIRES PDG CORSIKA GEANT SIBYLL MOCCA

γ 1 22 1 1 1 1
e+ 2 −11 2 2 2 2
e− −2 11 3 3 3 −2
µ+ 3 −13 5 5 4 3
µ− −3 13 6 6 5 −3
τ+ 4 −15 86 86 20 10
τ− −4 15 87 87 −20 −10
νe 6 12 66 4 15 0
ν̄e −6 −12 67 − 16 0
νµ 7 14 68 4 17 0
ν̄µ −7 −14 69 − 18 0
ντ 8 16 4 4 − 0
ν̄τ −8 −16 − − − 0
π0 10 111 7 7 6 5
π+ 11 211 8 8 7 4
π− −11 −211 9 9 8 −4
K0

S 12 310 16 16 12 12
K0

L 13 130 10 10 11 13
K+ 14 321 11 11 9 11
K− −14 −321 12 12 10 −11
η 15 221 17 17 22 14
n 30 2112 13 13 14 6
n̄ −30 −2112 25 25 −14 −6
p 31 2212 14 14 13 7
p̄ −31 −2212 15 15 −13 −7

Table 4.7. Elementary particle codes corresponding to several commonly used coding systems, for
the most relevant particles. The routines that process AIRES compressed output files allow the user
to select any one of these coding schemes.

88 CHAPTER 4. MANAGING AIRES OUTPUT DATA

2. Aires coding for elementary particles and decimal nuclear codes (A + 100 Z).

3. Particle Data Group coding system [38], extended with decimal nuclear codes (A + 105 Z).

4. CORSIKA simulation program particle coding system [36].

5. GEANT particle coding system [39].

6. SIBYLL [10] particle coding system, extended with decimal nuclear codes (A + 100 Z).

7. MOCCA-style particle codes [1], extended to match all AIRES particles.

The codes corresponding to elementary particles are listed in table 4.7.

Opening existing files

Once the proper environment is set up by means of the initializing routine, the system is ready to
open any existing compressed file. The open routine opencrofile will use the header information to
initialize the internal variables that permit processing the different fields defined for the file. The
following example illustrates how to open a file:

program sample
character*80 mydir, myfile
integer channel, irc
. . .
call ciorinit(0, 1, 0, irc)
. . .
call opencrofile(mydir, myfile, 0, 10, 4, channel, irc)
. . .

myfile and mydir are character strings containing respectively the file name and the directory where it
is placed. The integer argument “10” indicates that the logarithmic fields are going to be transformed
into decimal logarithms. channel is an output parameter identifying the opened file; it should not be
set by the calling program.

It is important to remark that this call will transparently open any compressed file, regardless of
its type or format (ground particle as well as longitudinal tracking particle files in all their variants),
the AIRES version used to write it and/or the machine used when writing it.

Getting information about the file

The headers of the compressed files are divided into two parts: One part containing the definitions of
the file’s data records and another section with information about the simulations that originated the
file.

The file definitions are specific to each opened file, and therefore the system must store them
separately for each one of the files that are simultaneously open.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 89

The other information, however, is of global character, and so the available data always corre-
sponds to the last opened file. These data are superseded each time opencrofile is called.

Routine croheaderinfo prints a summary of this global information while croinputdata0 copies
some of those data into arrays to make them available to the user (see page 152) and crotaskid
returns task name information. Functions getinpint, getinpreal, getinpstring and getinpswitch (see
pages 176–179) allow to obtain other input data items not returned by croinputdata0. getglobal
can be called to retrieve information about global variables that were defined during the simulations.
idlcheck returns information about the IDL instructions that were valid when the file was generated,
and crofileversion and thisairesversion return version information that might be useful when reading
compressed files written with old AIRES versions.

In some special applications it is necessary to access information that can be stored only in the
internal dump file. In these cases, it can be helpful to invoke the routine loadumpfile right after
opening the corresponding compressed file, and then use some of the routines dumpinputdata0,
dumpfileversion, etc., to access the mentioned data.

The structure of any already opened file can be printed calling routine crofileinfo which prints
a list of the different records defined for the corresponding file and the names of the fields within
records. It is also possible to load into arrays such information by means of routine crorecstrut in
order to make it available to the analysis program.

Reading the data records

Once a file is open, it remains positioned at the beginning of the compressed data section. From then
on, the file can be sequentially read using routine getcrorecord:

okflag = getcrorecord(channel, indata, fldata, altrec,
0, irc)

getcrorecord returns logical data, which in this case are stored in the logical variable okflag. The
returned value is “true” if the reading operation was completed successfully, “false” otherwise (end
of file, I/O error, etc.).

ciochann should be the same integer variable used when opening the file; it identifies the file to
be processed.

irc is an integer return code. If okflag is “false”, then the return code contains information about
the error that generated the abnormal return, as explained in page 172. For successful read operations,
irc indicates the record type that has been just read in: 0 for the default particle record, 1 (2) for the
“beginning (end) of shower” record, etc. At the same time, the logical variable altrec distinguishes
between “alternative” (non default) records (true), from default ones (false).

The data stored in the different fields of the record is retrieved by means of the arrays indata and
fldata. Both are single index arrays, containing integer and double precision data, respectively. The
data items stored in these arrays does vary with the kind of file being processed and the type of record

90 CHAPTER 4. MANAGING AIRES OUTPUT DATA

that was scanned. In all cases, the routine will automatically set the relevant elements of these arrays
accordingly with the logical definition of the record, regardless of the physical structure of it which
remains absolutely hidden at the user’s level.

To fix ideas, let us suppose that a ground particle file with normal particle records is being pro-
cessed. Every time irc is zero (default record), the integer and real data arrays will contain the
elements listed in table 4.5 (page 82), that is

indata(1) ← Particle code

fldata(1) ← Energy (GeV) (log)
fldata(2) ← Distance from the core (m) (log)
fldata(3) ← Ground plane polar angle (radians)
. . .
fldata(7) ← Particle weight

For different return codes, the number of assigned array elements may be different, as well as
their meanings; but in all cases such data items will be set accordingly with the corresponding record
sequence (tables 4.1, 4.2, etc.).

In order to make the analysis programs simpler and more robust, a special routine has been in-
cluded in the AIRES library to automatically set the adequate field indices corresponding to a given
record of a certain compressed file, as illustrated in the example of figure 4.2.

The outstanding characteristic of this piece of code is that the elements of arrays indata and
fldata are not referenced directly using numeric indices, but by means of integer variables like icode
for instance (see figure 4.2).

Those index variables are set by means of routine crofieldindex. The arguments required by this
routine include: (i) The identification of the file (channel). (ii) The record type, coincident with
the return codes of getcrorecord already mentioned. In this example 0 for the default record and
2 for the “end of shower” record. (iii) The first characters of the field name. Fields are identified
by their names, providing therefore absolute transparency to the fact that the order and number of
fields may change with the file being processed. The next argument of crofieldindex is set to 4 to
force the program to stop in case of ambiguous or erroneous field specification, thus providing a
very safe processing environment. (iv) The output argument datype returns information about the
data type corresponding to the specified field, as explained in page 147. In the particular case of
longitudinal particle tracking files, it is generally convenient to use the routine getlgtrecord in place
of getcrorecord. A complete description of getlgtrecord can be found in page 181; this routine must
be used jointly with getlgtinit.

Closing files and ending a processing session

The AIRES library routines support simultaneous processing of more than one compressed file. Sev-
eral compressed files can be opened at the same time, each one identified by the corresponding chan-
nel integer variable.

CHAPTER 4. MANAGING AIRES OUTPUT DATA 91

program sample
. . .
integer datype, irc, icode, idist, inear
integer indata(30)
double precision fldata(30)
integer particlecode
double precision logdistance, numberofnear
. . .
call ciorinit(0, 1, 0, irc)
call opencrofile(mydir, myfile, 0, 10, 4, channel, irc)
. . .

icode = crofieldindex(channel, 0, ’Particle code’,
4, datype, irc)

idist = crofieldindex(channel, 0,
’Distance from the core’,
4, datype, irc)

inear = crofieldindex(channel, 2, ’Particles too near’,
4, datype, irc)

. . .

okflag = getcrorecord(channel, indata, fldata, altrec, 0,
irc)

if (irc .eq. 0) then
particlecode = indata(icode)
logdistance = fldata(idist)
. . .

else if (irc .eq. 2) then
numberofnear = fldata(inear)
. . .

end if
. . .

Figure 4.2. Processing compressed data files, an example illustrating how to set field indices
automatically.

92 CHAPTER 4. MANAGING AIRES OUTPUT DATA

The opened files can be closed using two alternative procedures (see page 144): (i) Routine
cioclose1 closes individual files. cioclose closes all the currently opened files.

Routine cioclose should be used only if the processing session will continue after closing all files.
To finish an analysis program in an ordered fashion use the routine ciorshutdown. This procedure
performs all the required tasks to properly set down the processing system, including a call to cioclose.

Other operations

There are many other routines included in the AIRES library that provide useful tools for special
analysis tasks. Such routines are explained in detail in appendix D (page 140), we shall limit here to
a brief presentation of the most relevant ones:

Counting records. Routines crorecinfo and croreccount count the data records contained within a
compressed file.

Repositioning. Routine crorewind repositions an already opened file at the beginning of the data
section. Routines crorecnumber and crogotorec, used jointly, permit accessing the data
records in arbitrary order.

Fast scanning of a file. Routine crorecfind finds the next appearance of a record of a given type (to
locate shower headers, for example). getcrorectype returns the type of the next record, and
regetcrorecord re-reads the current record.

Longitudinal tracking file utilities. Routine crooldata returns basic information about the positions
of the observing levels defined for the simulations; while olcoord returns the coordinates of the
intersections between the observing levels and the shower axis and olv2slant evaluates the slant
depths corresponding to each observing level. Routines olcrossed and olcrossedu decode the
crossed observing levels key defined in equation (4.6), returning the variables if , il and sud
(see section 4.2.1). The logical function olsavemarked permits determining whether or not a
given observing level is recorded into a compressed file.

Special primary utilities. Besides the specific routines designed to process special primary particles,
described in detail in section 3.5, the AIRES library includes also some auxiliary routines that
are useful to obtain data about the special primaries that were defined at the moment of creating
the compressed file that is being analyzed. crospcode and crospmodinfo are examples of such
procedures.

Miscellaneous routines. The library contains some other routines than may be useful in certain ap-
plications, for example the pseudo-random number utilities raninit, urandom,urandomt, and
grandom; Gaisser-Hillas function related routines: fitghf, ghfpars, ghfx, ghfin; atmospheric
depth utility routines line xslant; etc.

The AIRES object library is continously evolving, so additional procedures will be surely in-
cluded in future AIRES versions.

Chapter 5

The AIRES Runner System

Production simulation tasks usually require large amounts of computer time to complete, and in such
cases the user risks loosing all the simulation run if the system goes down before the task is finished.
To avoid this inconvenient situation, the AIRES simulation system provides a special auto-saving
mechanism that permits splitting the simulation job into small runs. In case of abnormal interruption,
the simulations can be restarted at the point they were when the last auto-saving was performed.

As explained in chapter 3 (page 34), a simulation task may require several invocations of the
simulation program if the auto-save mechanism is enabled. If this is done manually, the user must
control the sequence of instructions needed to complete the simulations. To ease the management of
such sequential series of processes, a set of scripts were developed with the capability of automatically
launching the corresponding jobs. These scripts are part of the AIRES Runner System (ARS), designed
as a set of interactive procedures to manage complex simulations tasks.

The AIRES Runner System works only on UNIX platforms, and provides tools for input file
checking, sequential and concurrent task processing, event logging, etc. This chapter is devoted to
present some examples that will help the user to get familiar with the Runner System.

There are many parameters that modify the behavior of the AIRES Runner System. Most of them
are user-settable and their definition statements are placed within the ARS initializing file .airesrc. In
standard AIRES installations, this file is placed in the user’s home directory.

5.1 Checking input files

In section 3.2.2 (page 35), the IDL directives CheckOnly and Trace were used to instruct AIRES
simulation programs to scan a given input file, report on its contents and stop without actually starting
the simulations.

The ARS command

airescheck -t myfile.inp

will invoke Aires with the same input as displayed in page 36. The -t qualifier is placed to enable
typing the input lines as long as they are scanned.

93

94 CHAPTER 5. THE AIRES RUNNER SYSTEM

There are additional qualifiers accepted by this command, for example:

airescheck -tP -p AiresQIIr04 myfile.inp

The -p qualifier overrides the default simulation program used to process the input file, and the P
switch indicates that the output must be printed instead of being typed at the terminal. The print
command to use can be set modifying the .airesrc initializing file.

5.2 Managing simulation tasks

Once the input file has been checked, the simulations can be started. The command

airestask myfile

will first check that file myfile.inp1 exists, and then will create an entry in the corresponding ARS
spool. Finally, aireslaunch will be executed.

The aireslaunch script will detect that there is a task pending completion and so will prompt the
user to start the simulations. In case of positive answer, the simulation program will be started with
the corresponding input, and will be repeatedly invoked if necessary until the task is completed2. All
those operations are completely automatic, no further user intervention is normally required.

If there are more than one task to be processed, they can be spooled at any moment after launching
the first simulations. The command

airestask my_other_file

will make a new spool entry which will be queued after the first one. Execution of this task will start
as soon as the previous one is finished. There is no limit in the number of tasks that can be queued in
the ARS spools.

At any moment during the simulations, it is possible to inspect the evolution of the spooled tasks
by means of the ARS command airesstatus.

In the preceding examples, the default simulation program (which normally is the Aires program)
will be used. There are two alternatives to override the default specification: (i) Modify the default
program setting of the initialization file .airesrc. (ii) Use the -p qualifier of the airestask command:

airestask -p AiresEPLHC yet_another_file

AiresEPLHC is the name of a variable defined within the initialization file, which indicates the
executable program that contains a link to the EPOS LHC hadronic package.

1airestask first assumes a default extension .inp for the input file name, and as a second alternative, tries to find the file
whose complete name is as specified in the input parameter.

2The simulation program communicates with the script via a file that contain information about the status of the simu-
lations.

CHAPTER 5. THE AIRES RUNNER SYSTEM 95

5.2.1 Canceling tasks and/or stopping the simulations

Every spooled task can be canceled by means of the command airesuntask, for example:

airesuntask my_other_file

will erase the second spooled task of the preceding section. If the airesuntask command is invoked
with no parameters, then it will prompt the user to cancel each one of the spooled tasks.

It is not recommendable to remove the spool entries corresponding to tasks that are currently
running. In such cases it is better to first stop the simulation program, and wait until the AIRES
Runner System shuts down.

The simulation program can be stopped with the ARS command airesstop, which generally is
invoked with no arguments. This script originates an ordered shutdown of the simulations, which
includes an update of the internal dump file, and may take up to several minutes to effectively interrupt
the simulations. The command airesstatus can be used to monitor the status of the system during this
process.

On the other hand, a currently running simulation can be immediately aborted by means of com-
mand aireskill. In this case the corresponding processes are killed without any previous auto-saving
operation.

Stopped simulations can always be restarted using aireslaunch.

5.2.2 Performing custom operations between processes

Every time a process3 ends, the ARS checks for the existence of a executable script named After-
Process (case sensitive!), first in the current working directory, and then –if not found– in the default
directory of the user’s account (HOME directory). If the file is found, it is executed.

The complete command line used when invoking the AfterProcess macro is the following:

AfterProcess spool tn msg rc trial totsh lastsh prog

where

spool is the spool identification.

tn is the task name.

msg is a message string coming from the simulation program. Normally it takes the values End-
OfTask or EndOfRun, indicating if the current task was or not finished, respectively. Other
values are also possible and correspond to abnormal situations.

rc is a numeric parameter, taking the value 2 if the run has been stopped using an AIRES.STOP file
(command airesstop).

3See section 3.1 (page 34).

96 CHAPTER 5. THE AIRES RUNNER SYSTEM

trial is a numeric variable counting the number of trials for the current run. Generally takes the value
1, but in certain circumstances, for example when relaunching AIRES after a system crash, it
can take larger values.

totsh is the total number of showers for the current task.

lastsh is the last completed shower.

prog is the instruction used to invoke AIRES, which includes the full name of the simulation program
used in the last run.

This powerful ARS option makes it possible for the user to perform operations of almost every
kind after ending the processes. Of course, a certain degree of expertise with UNIX systems may
be required in certain cases. Typical examples of operations that can be done using this facility are:
File movement after completion of tasks (for example to massive storage systems), alerts of any type
about conditions of the system, like full disks, etc.

On return, the AfterProcess script can communicate with the ARS via the exit code. If it is zero
then processing will continue normally, otherwise the ARS will send a mail notifying the abnormal
return code and then will stop. If it is necessary to restart the simulations, it can be done using the
ARS command aireslaunch.

The following shell script is a very simple example of an “after process” macro:

#!/bin/sh
#
if[$3 = EndOfTask]
then
#
This code will be executed only after ending a task.
#

mv ${2}.grdpcles /mysafeplace
fi
exit 0

Notice that no action will be taken up to the end of a task. Whenever this happens, the corresponding
ground particle file is moved to another directory. The command exit 0 ensures normal return code;
exit n with n ̸= 0 means an abnormal exit and in this case the simulations will be stopped.

Similarly as in the case of the AfterProcess macro, the ARS system will search for a BeforePro-
cess macro, right before invoking the simulation program. The existence of the BeforeProcess macro
is checked in the working directory, and in the user’s account (HOME) directory (in that order). If
the file is found, it is executed.

CHAPTER 5. THE AIRES RUNNER SYSTEM 97

The complete command line used when invoking the BeforeProcess macro is the following:

BeforeProcess spool tn trial ifile prog

where

spool is the spool identification.

tn is the task name, or UNKNOWN if the task is not initialized yet.

trial is a numeric variable counting the number of trials for the current run. Generally takes the value
1, but in certain circumstances, for example when relaunching AIRES after a system crash, it
can take larger values.

ifile is the name of the input file to be used when running the simulation program.

prog is the instruction used to invoke AIRES, which includes the full name of the simulation program
used in the next run.

After completing execution of the BeforeProcess macro, the ARS checks the corresponding re-
turn code, continuing with the next step only if it is zero.

5.3 Concurrent tasks

In many cases it is necessary to simultaneously process more than one task. Systems having more than
one CPU and/or clusters of machines sharing the same file system, are examples of such situation.

The AIRES Runner System provides certain tools designed to work under such circumstances.
The key idea is to define more than one spool, and assign one spool to each processing unit, either a
CPU or a machine inside the cluster.

In the preceding examples, the airestask command was invoked without spool specification. The
default spool is used in case of missing specification, and that is what was actually done in those
examples.

In the standard configuration there are 9 predefined spools, named respectively “1”, “2”, . . . , etc.
Spool “1” is the default spool4. The command

airestask -s 2 myfile

will create a spool entry placed in spool “2”. The user will be prompted to start the simulations if
there is currently no activity related with that spool. The command

airesstatus 2

4The ARS includes also the commands mkairesspool and rmairesspool which allow the user to respectively create and
delete spool directories.

98 CHAPTER 5. THE AIRES RUNNER SYSTEM

will report on the simulations that are running at spool “2”. Similarly,

airesstatus all

will report on the simulations that are running at every active spool.
In the following interactive session, it is illustrated how to launch three simultaneous tasks (it

is assumed that the machine possesses various CPU’s which can be automatically assigned to the
launched processes):

cd directory1
aireslaunch -s 1 task1

. . .

cd directory2
aireslaunch -s 2 task2
. . .

cd directory3
aireslaunch -s 3 -p AiresQIIr4 task3
. . .

It is most important that the working directories of different tasks be also different: Concurrent
simulation programs running with the same working directory may generate conflicts when commu-
nicating with the ARS scripts. This fact is stressed by means of the cd commands of the example,
where directory1, directory2 and directory3 must be different directory specifications.

Notice also that the third spooling command makes use of an alternative simulation program in
order to perform a different kind of simulation. Alternative programs may also be necessary when
running simulations on clusters sharing the same file system but made with non compatible platforms.
In those cases it is necessary to have different executable modules for each platform. Once such
modules are available, it is possible to change the default programs corresponding to the different
spools by means of suitable modifications to the .airesrc initialization.

The details about how to make the AIRES Runner System work in complex operating environ-
ments are rather technical and go beyond the scope of this manual. Such a job requires normally a
good degree of expertise on UNIX systems.

5.4 Some commands to manage dump file data

Chapter 4 (page 69) explains in detail the operations needed to retrieve data stored within the internal
dump file in either its binary or ASCII versions. Some of them are frequently used and generally
involve very similar sequences of instructions. A typical example is to export one or more tables
corresponding to an already finished task.

The ARS includes a shell script that can be helpful in those cases. Consider for example the
command (under UNIX)

airesexport mytask 1001 1205 to 1213

CHAPTER 5. THE AIRES RUNNER SYSTEM 99

Its action is to invoke the AIRES summary program with the following input

Summary Off
TaskName mytask
ExportTable 1001
ExportTables 1205 1213
End

generating text files for tables 1001, 1205, 1207, 1211 and 1213 (see appendix C).
In some cases it may be necessary to specify other parameters, like in the following example

airesexport -w idfdir -O LM -s mytask 2501

This command will generate single shower tables (enabled by the -s qualifier) as well as average
ones. The options LM correspond to dN/d log10 E distributions with energies expressed in MeV
(see section 4.1.2), and the string following the -w qualifier (idfdir) indicates the directory where the
IDF and/or ADF files are located (The global directory accordingly with the definitions of section
3.3.2).

5.4.1 Converting IDF binary files to ADF portable format.

ADF files were implemented for AIRES version 2.0.0, and to have them written by the simulation
programs after a task is completed, it is necessary to explicitly enable them by means of the IDL
directive ADFile. The (binary) IDF is always generated, regardless of the input settings and/or the
version of AIRES used.

Of course, the IDF stores all the data associated with both input parameters and output observ-
ables, and is enough for any kind of analysis provided the user always works with compatible com-
puters. But this may not be the case when a person or group is working at different locations. For
such cases, a portable file format is needed and the ADF becomes essential to enable data analysis in
non-compatible workstations.

If the ADF was not generated during the simulations, or if the simulations were performed using
a version of AIRES previous to version 2.0.0, it must be created manually. The current AIRES
distribution includes an IDF to ADF converting program, whose default name is AiresIDF2ADF.

This program can be used directly. It is just necessary to invoke it (no arguments needed) and
answer to the prompts that will be appearing.

On the other hand, the ARS includes a special shell script that permits converting files without
calling AiresIDF2ADF manually. Let us illustrate how to use this command with an example. Sup-
pose in a certain place there are some IDF files that need to be converted to ADF format. The UNIX
command

idf2adf taskname1 taskname2 taskname3

will search for the files taskname1.idf, taskname2.idf, etc., and will call AiresIDF2ADF as many
times as necessary, to create the portable files taskname1.adf, taskname2.adf, etc. Of course, the
old IDF files will remain unchanged.

100 CHAPTER 5. THE AIRES RUNNER SYSTEM

This script will work well in most cases. However, there might be special situations where it is
necessary to use AiresIDF2ADF manually, for example when the IDF file is renamed with a new
name not ending with “.idf”.

Appendix A

Installing AIRES and maintaining
existing installations

As mentioned in section 1.2 (page 8), every AIRES distribution is currently packed in a single com-
pressed UNIX tar file. In this appendix it is assumed that the software distribution was successfully
decompressed and tar expanded.

A.1 Installing AIRES 19.04.10

In UNIX platforms, the installing procedure is quite simple: Almost everything is done automatically.
The key points to take into account are:

(a) A Unix shell script doinstall is provided. This script will install the software automatically.

(b) The file config contains all the customizable variables. You should check its contents and edit
it if needed before invoking doinstall.

(c) There will be two main directories:

1. Aires root directory (hereinafter named Aroot), which is the highest level directory for
the installed files. Normally the AIRES distribution compressed tar file and the AIRES
External Input data compressed tar files are located in this directory before starting the
installation process. You might need to specify Aroot by editing the config file (located
within the Iroot directory). For standard, personal installation, the default (creating a
directory named aires in your home directory) will be OK.

2. Installation root directory (hereinafter named Iroot), which is the directory where the
distribution file was downloaded (that is, the directory containing the doinstall script).

Notice that the Iroot and Aroot directories may or may not be the same directory (Do not worry
about this: The installation program will manage every case properly.).

101

102 APPENDIX A. INSTALLING AIRES AND MAINTAINING EXISTING INSTALLATIONS

(d) Your account must have access to a FORTRAN compiler (normally, command gfortran), and
in some cases to a C compiler (commands gcc, etc.); and these compilers must be placed in
one of the PATH directories (in other words, if you type at your terminal, say, gfortran, the
machine will take gfortran as a known command). If the compilers are not in the PATH
you will have to enter their absolute location manually in the config file (Our recommendation,
however, is to ensure that the compilers are in the PATH. It is something not difficult to achieve.
If you do not know how to proceed or what we are speaking about, then ask your local UNIX
expert).

A.1.1 Installation procedure step by step

1. Ensure that you have write permission on both Iroot and Aroot directories, and in all their
sub-directories.

2. cd to Iroot, and edit the file config if necessary. The current AIRES installation program will
automatically set most of the required installation parameters, including automatic detection of
the operating system (Linux and Mac OSX are the ones currently supported).

3. If you need a full installation that will allow you to run simulation tasks, you must also down-
load and place inside the Aroot directory the External Input data file (available from the
AIRES repository). The size of this file is about 300 MB. It is recommended to download
and install the External Input Data distribution.

4. Enter the command

doinstall 0

if you are installing AIRES for the first time, or

doinstall 1

if you are upgrading your current installation (This is the case for those users that are already
employing a previous version of AIRES. Note that you should not erase any existing installa-
tion of AIRES before completing the upgrade.).

This procedure will install the software using the data you set in step 2. This may take some
minutes to complete. A message will be typed at your terminal indicating whether the in-
stallation was successful or not. If you get any error message(s), you should check all the
requirements described previously, in particular points (d) and (1). Try also modifying the
config file.

5. Type the command (case sensitive)1

Aires
1The name Aires can be changed modifying adequately the config file. If this name was changed, then the user supplied

name must be typed in place of the default one.

APPENDIX A. INSTALLING AIRES AND MAINTAINING EXISTING INSTALLATIONS 103

to see if the program is running and is in your search path. You should see typed at your
terminal something like the following text2:

>>>>

>>>> This is AIRES version V.V.V (dd/Mmm/yyyy)

>>>> (Compiled by

>>>> USER: uuuuu, HOST: hhhhhhh, DATE: dd/Mmm/yyyy

>>>>

> dd/Mmm/yyyy hh:mm:ss. Reading data from standard input unit

where V.V.V indicates the current version of AIRES (19.04.10) and goes together with the
release date. Type x and press ⟨ENTER⟩ to leave the program.

If step 4 ended successfully and you fail to run the program, it is likely that the AIRES bin
directory is not in your environment search path (Unix environment variable PATH). In some
systems you need to log out and log in again to make effective any PATH change. If you cannot
place the AIRES bin directory into your account’s PATH, then ask a Unix expert to do that for
you. Once you are sure that the directory is in the search path, and if the problem still persists,
check if the executable file Aires exists. If it does not exist that means that step 4 was not
successfully completed. Do not continue with the next step until you succeed with this one.

6. Installation of extensions. The current version of AIRES permits the installation of extensions
that add new capabilities to the original system. At present, there is one of such extensions
available: ZHAireS, that allows to simulate the radio wave emission that takes place during
shower development (see reference [42] and the corresponding manual for details). Installation
of extensions is not mandatory; if you do not need to do so you can skip this point and go
directly to (7).

To install the extension(s):

(a) Download the extensions available (compressed tar files of the form Name-Exten-v-v-
v.tar.gz), and place then in the same directory where the current AIRES distribution tar
file is.

(b) cd again to the Iroot directory. Together with the doinstall script that you have already
used to install AIRES, you will find another script: addextensions.

(c) If you want to perform a quick installation of the extensions, using the same installation
parameters that are in the config file, just execute

addextensions
2You should also obtain a similar output if you invoke the AIRES/EPOS/QGSJET/SIBYLL simulation program instead

of the default Aires.

104 APPENDIX A. INSTALLING AIRES AND MAINTAINING EXISTING INSTALLATIONS

This command will do all the necessary to install the extensions, including compilation
of sources and building executable programs. Then go directly to (6e).

(d) Instead, if you need to customize the configuration parameters that are relevant to the
extension, then execute

addextensions noinstall

This command will just expand the corresponding tar file and perform some checks, with-
out compiling and/or building any program or library. After this is complete, for each
installed extension you will see the corresponding config.extension_name_in_lowercase
file. You can edit this file manually, perform all the needed changes, and complete the
installation of the extension using the command

doinstall 3 extension_name_in_lowercase

(e) Follow the instructions placed in the specific Install.Extension.HowTo file to ensure that
the corresponding program is working properly.

7. cd to your HOME directory and verify the presence of a file named .airesrc.

Normally it is not necessary to change anything in this file, but the need may appear in the
future, specially if you decide to use the UNIX scripts that are provided to help running AIRES
(see chapter 5).

8. If you completed successfully these steps, the software should be properly installed.

9. After successfully completing these steps you can optionally delete the files corresponding to
old versions of AIRES. Such files are placed within the Aroot directory. For example, directory
18-09-00 contains AIRES 18.09.00 files, etc.

10. If you completed successfully these steps, the software should be properly installed. In that
case, and if you do not have previous experience using AIRES, we strongly recommend you to
go to the Iroot directory again, enter the doc sub-directory, print the file LearnByExamples.txt,
and follow the instructions that are in this file to learn how to use AIRES.

A.2 Recompiling the simulation programs

In many cases it may be necessary to recompile the simulation programs after having successfully
installed the AIRES system. Some examples of such situations are:

• Some compilation parameters were not set accordingly with the user needs; or the required
configuration is no more the one set up at the moment of installing the software.

• It is necessary to install AIRES in different (not compatible) platforms sharing the same direc-
tory tree.

APPENDIX A. INSTALLING AIRES AND MAINTAINING EXISTING INSTALLATIONS 105

• It is necessary to create more than one executable program, each one compiled with different
compilation parameters. As an example of this case, consider that the number and kind of
records that are written in the compressed particle files can be controlled by means of compila-
tion parameters (see section 4.2.1), and that it is required to have the executables for different
file formats.

The arguments recognized by the doinstall executable script allow the user to easily perform the
different operation required in cases like the ones previously enumerated.

The general syntax of doinstall is:

doinstall ilev [cfext]

ilev is an integer ranging from 0 to 4 indicating the “level” of installation:

0 Complete installation of the AIRES system. Necessary only when installing AIRES for the first
time.

1 Upgrade of an existing installation, making the installed version the new current version.

2 Recompiling. All the simulation programs and the summary program are compiled and linked. The
AIRES object library is rebuilt.

3 Relinking. New executables for all the simulation programs and the summary program are created
using the existing object files.

4 Rebuilding the library. The AIRES object library is rebuilt using the existing object files.

cfext is an optional argument. It is a character string indicating that an alternative configuration file
must be used to set the installation parameters. If cfext is no null, then the file config.cfext is used
instead of the default config file used when cfext is not specified.

To perform different compilation/installation jobs, it might be useful to have several configuration
files. For example, the config file is first copied to a new config.short file. Then config.short is
edited changing the following parameters: (i) The format for both ground and longitudinal tracking
compressed files is set to “short”. (ii) The name of the executable program Aires is changed into
Aires_sht. Finally the command

doinstall 2 short

is executed. This will generate several new executable programs, namely, Aires_sht, Aires_shtS23,
etc., which will be capable of producing compressed files with short format particle records.

Appendix B

IDL reference manual

All the main simulation programs and the summary program AiresSry use a common language to
receive the user’s instructions. This language is called Input Directive Language (IDL), and currently
consists of some 70 different instructions to set simulation parameters, control the output data, etc. In
this section we list, alphabetically ordered, all AIRES 19.04.10 IDL directives.

The IDL directives can be written using no special format, with one directive per line (there are
no “continuation lines”, but each line can contain up to 176 characters). The directives start with the
directive name followed by the corresponding parameters. All the “words” that form a sentence must
be separated by blanks and/or tab characters.

All directives are scanned until either an End directive or an end of file is found. Most directives
can be placed in any order within the input stream. The Input directive permits inserting instructions
placed in separate files letting the user to conveniently organize complex input data sets. Input
directives can be nested.

Dynamic (can be set every time the input file is scanned), static (can be set only at task initial-
ization time) and hidden1 (associated with rarely changing parameters) directives are respectively
marked as d, s, h. Names in typewriter or boldface font refer to keywords, while names in ital-
ics refer to variable parameters. Underlined parts of keywords refers to shortest abbreviations: Not
underlined characters are optional. Expressions between square brackets ([expression]) are optional,
while alternatives are written in the following way: { alt_1 | alt_2 }. To specify angles, lengths, times,
energies, atmospheric depths, magnetic fields, etc., it is required to give two fields separated by blank
space:

number unit

number is a decimal number and unit is a character string representing the physical unit used in the
specification. All the valid units are listed in table 3.1 (page 38). Additionally, time specifications
may be of the form: [number hr] [number min] [number sec], where number represents a
floating point number.

1Hidden directives are connected to parameters that seldom need to be modified. They are not printed in the input data
summary, unless were explicitly set or a full listing mode was enabled. Notice that this only affects output data printing:
All other directive properties remain unchanged.

106

APPENDIX B. IDL REFERENCE MANUAL 107

B.1 List of IDL directives.

#

Comment character. For every scanned input line, all characters placed after the comment
character ‘#’ are ignored.

&
Syntax: &label

IDL label. Labels are used by several directives, for example Remark and Skip. The & must be
the first non-blank character in the line, and all characters after label are treated as a comment.
label is a non null string which can contain any character excluding blanks and the comment
character #.

AddAtmosModel
Syntax: AddAtmosModel [modidstr] [«] input_file

AddAtmosModel [modidstr] [«] &label
. . . (instructions for model definition)
&label

(d) Adding a custom atmospheric model. modidstr is a string having no more that 16 characters
that uniquely identifies the model being defined. The instructions that define the model can
either be read-in from a separate external file input_file, or from a here-document delimited by
a label &label. modidstr can be specified either in the directive line, or within the input data file
or here-document. For a more detailed description of the directives to define an atmospheric
model, see section 3.3.4 (page 54).

AddSite
Syntax: AddSite name lat long height

(d) Appending a new site to the AIRES site library. name is a string having no more than 16
characters, and must be different to all the previously defined sites including the predefined
entries listed in table 3.4 (page 57). Site names are case sensitive. lat and long are angle
specifications defining respectively the geographic latitude and longitude of the site. lat (long)
must be in the range [−90◦, 90◦] ([−180◦, 180◦]). height is a length specification defining the
site’s altitude above sea level. The directive Site permits to select already defined locations.

108 APPENDIX B. IDL REFERENCE MANUAL

AddSpecialParticle
Syntax: AddSpecialParticle pname module [parstring]

AddSpecialParticle pname module [parstring] « input_file
AddSpecialParticle pname module [parstring] « &label
. . . (input data for the external module)
&label

(d) Adding a new definition to the list of special particles. pname is a string having no more
than 16 characters that uniquely identifies the special particle being defined. module is the
name of the executable module associated to the special particle. The file module must exist
in the current “working directory” or in one of the directories currently included in the file
search path. Every time a new shower with “primary” pname starts, the module module will be
executed by the main simulation program to generate a list of (standard) primary particles that
will be the actual shower primaries. Section 3.5 (page 63) contains a detailed description about
how to build and use such kind of modules. parstring is an optional parameter string (can
contain embedded blanks) that is (portably) passed to the external module. Additional input
data can be passed to the external module via a input_file or by a here-document delimited by
a label &label.

ADFile
Syntax: ADFile [{ On | Off }]
Default: ADFile is equivalent to ADFile On

ADFile Off is assumed in case of missing specification.

(d) If ADFile On is specified, then an ASCII dump file will be generated upon task completion.
The ASCII dump file (ADF) is a portable version of the internal dump file (IDF) that can be
transferred among different platforms.

AirAvgZ/A
Syntax: AirAvgZ/A number
Default: AirAvgZ/A 0.5

(s,h) Sets the value of the average ratio Z/A for air.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

APPENDIX B. IDL REFERENCE MANUAL 109

AirRadLength
Syntax: AirRadLength number
Default: AirRadLength 36.62

(s,h) Sets the value of the radiation length for air, expressed in g/cm2.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

AirZeff
Syntax: AirZeff number
Default: AirZeff 7.3

(s,h) Sets the value of the effective atomic number Z for air.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

Atmosphere
Syntax: Atmosphere modname [modpars]
Default: Atmosphere Linsley

(s) Switches among different atmospheric models. modname is a string that uniquely identifies
the atmospheric model to use. The optional argument(s) represented by modpars correspond
to parameters that some of the supported models may accept. The current version of AIRES
includes the following predefined atmospheric models:

1. Linsley. Linsley’s standard atmosphere model. This is the default model and has no
parameters (see section 2.1.2).

2. SouthPoleAvg. South Pole average atmosphere. This model has no parameters, and
gives a profile obtained from the average of four atmospheric profiles corresponding to
typical profiles for the months of March, July, October, and December. This option is
recommended for simulations at the South Pole site.

3. LSouthPole. Linsley’s model for the South Pole. No user-settable model parameters.
This model should be used only for simulations with ground level not less than 2000
m.a.s.l.

4. MalargueAvg. Malargue site annual average atmosphere.

5. GAMMA. GAMMA atmosphere model developed by the La Plata (Argentina) group
[41]. Parameter available: GrdTemp, temperature at ground.

6. Isothermic. Isothermic atmosphere. Parameters available: Temp, temperature; Dens0,
density at sea level.

7. Homogeneous. Constant density atmosphere. Parameter available: Density
(e.g., Density 1.22 kg/m3); if not specified it defaults to 1.2041 kg/m3

110 APPENDIX B. IDL REFERENCE MANUAL

Not specified ground temperatures default to 295 K.

In addition to the predefined atmospheric models, the user may add custom models using the
directive AddAtmosModel (107).

Brackets
Syntax: Brackets { On | Off }

Brackets [On] ob cb [ec]
Default: Brackets On { } &

(d) Controls the behavior of the variable replacement algorithm used while scanning the input
file. When the feature is disabled (Brackets Off) the input lines are not scanned to search for
defined variables to be replaced. When Brackets On is in effect and there are defined variables,
then variable substitution is performed when it corresponds. The active variable names must be
enclosed using the current brackets, which can be changed using this directive. The arguments
ob, cb, and ec correspond, respectively, to the opening and closing brackets, and the bracket
escape character. These single character variables must be different, and can be specified with
the same rules that apply for the argument of the CommentCharacter directive.

CheckOnly
Syntax: CheckOnly [{ On | Off }]
Default: CheckOnly is equivalent to CheckOnly On

CheckOnly Off is assumed in case of missing specification.

(d) When CheckOnly is enabled, the simulation program reads and process all the input data
normally, performs the internal consistency checks and then exits without starting the simula-
tions. This directive is useful for input file debugging.

CommentCharacter
Syntax: CommentCharacter { char | nnn }
Default: The default comment character is ‘#’

(d) The plain text files produced with the ExportTables directive can have heading and trailing
lines. All these lines start with a comment character in their first column. The default comment
character (‘#’) is normally OK, but if the Export’ed files could be used as input of another
program (a plotting utility, for example) which recognizes a different comment character; in
such cases the CommentCharacter directive permits setting this mentioned character. char
can be any single character (with no quotes). Alternatively, the comment character can be
specified by means of its ASCII decimal code, expressed in the form of a three-figure number
nnn (This permits using non-printable comment characters as well as resetting the comment
character to ‘#’).

APPENDIX B. IDL REFERENCE MANUAL 111

Date
Syntax: Date fpyear

Date year month day
Default: The current date at the moment of invoking the program.

(s) This directive sets the date assumed for the simulations. The date is used at the moment of
evaluating the geomagnetic field by means of the IGRF model (see sections 2.1.5 and 3.3.5).
Setting the date may be necessary when performing simulations with the purpose of analyzing
a certain air shower event reported by an experiment. The date can be specified either as three
integers (year month day) or a floating point number with the format “year.part_of_the_year”.

DelGlobal
Syntax: DelGlobal var

(d) Deletes an already defined global variable. See also directives Import and SetGlobal.

DielectricSuppression
Syntax: DielectricSuppression [{ On | Off }]
Default: DielectricSuppression is equivalent to DielectricSuppression

On
DielectricSuppression On is assumed in case of missing specification.

(s,h) Switch to include/exclude the dielectric suppression effect from the LPM algorithms [25,
31] for the case of electron or positron bremsstrahlung. The effect is enabled by default.
Disabling it may lead to non realistic air shower simulations. If LPMEffect Off is in effect
(see page 119), then the dielectric suppression is always disabled.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

DumpFile
Syntax: DumpFile
Reserved for future use.

Echo
Syntax: Echo string

(d) The action of this directive is to write string to the standard output channel. Useful to have
messages typed while the AIRES input file(s) are being processed. Notice that the message
is written only to standard output: use the Remark (126) directive if it is necessary to save it
within the AIRES output files.

112 APPENDIX B. IDL REFERENCE MANUAL

ElectronCutEnergy
Syntax: ElectronCutEnergy energy
Default: ElectronCutEnergy 80 KeV

(s) Minimum kinetic energy for electrons and positrons. Every electron having a kinetic en-
ergy below this threshold is not taken into account in the simulation; positrons are forced to
annihilation. energy must be greater than or equal to 80 keV.

ElectronRoughCut
Syntax: ElectronRoughCut energy
Default: ElectronRoughCut 900 KeV

(s) Electrons and positrons are not followed using detailed calculations when their energy is
below the one specified by means of this directive. This means that several processes are not
taken into account, for example Coulomb scattering. energy must be greater than or equal to
45 keV.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

ELimsTables
Syntax: ELimsTables minenergy maxenergy
Default: ELimsTables 10 MeV emax

emax is the maximum between 10 TeV and 0.75 Eprimary.

(s) This directive defines the energy interval to use in the energy distribution tables (his-
tograms). Each energy distribution histogram consists of 40 logarithmic bins starting with
minenergy (lower energy of bin 1) and ending with maxenergy (upper energy of bin 40).

EMtoHadronWFRatio
Syntax: EMtoHadronWFRatio ratio
Default: EMtoHadronWFRatio 88

(s,h) Ratio between the electromagnetic and hadronic thinning weight factors. This instruction
permits setting the ratio AEM of equation (2.23). ratio must be equal or greater than 1. The
default value of 88, adjusted taking into account the results of representative simulations, is
normally adequate.

End
Syntax: End

(d) End of directive stream for the current input file. The file is no more scanned when this
directive is found. If End is not present, the file is entirely scanned.

APPENDIX B. IDL REFERENCE MANUAL 113

Exit
Syntax: Exit

x

(d) The program is stopped without taking any further action. This directive is useful to end
an interactive session.

ExportPerShower
Syntax: ExportPerShower [{ On | Off }]
Default: ExportPerShower is equivalent to ExportPerShower On

ExportPerShower Off is assumed in case of missing specification.

(d) This directive affects only those tasks simulated with the PerShowerData Full option (see
page 122). If ExportPerShower On is specified, then a set of plain text files (one file per
simulated shower) will be written for all the tables selected for exporting (see directive Ex-
portTables). Each one of these “single shower” tables contains the values adopted by the
corresponding observable in the respective shower. The normal table containing the average
over showers is also exported, and is not affected by this directive.

ExportTables
Syntax: ExportTables mincode [maxcode] [Options optstring]

ExportTables Clear
Default: No tables are exported by default.

(d) Tables whose codes range from mincode to maxcode are selected for exporting as plain text
files. If maxcode is not specified, it is taken equal to mincode. The table codes are integers. A
complete list of available tables (more than 180) is placed in appendix B, or can be obtained
with directives Help tables and/or TableIndex. The Clear option permits clearing the list
of exported tables, thus overriding all the previous ExportTables directives. opstring is a
string of characters to set available options: s (h) suppress (include) file header; x (X) include
“border” bins as comments (within the data); U do not include “border” bins; r (d) normal
(density) lateral distributions; L (l) distributions normalized as d/d log10 (d/d ln); r (a) express
atmospheric depth as vertical (slant) depths; K, M, G, T, P, E, express energies in keV, MeV,
. . . , EeV. The default options are: hxrG.

ExtCollModel
Syntax: ExtCollModel [{ On | Off }]
Default: ExtCollModel is equivalent to ExtCollModel On

ExtCollModel On is assumed in case of missing specification.

(s) Switch to enable/disable the external hadronic interactions model.

This directive belongs to the model-dependent IDL instruction set and may be changed or not

114 APPENDIX B. IDL REFERENCE MANUAL

implemented in future versions of AIRES.

ExtNucNucMFP
Syntax: ExtNucNucMFP [{ On | Off }]
Default: ExtNucNucMFP is equivalent to ExtNucNucMFP On

ExtNucNucMFP On is assumed in case of missing specification.

(s,h) Switch to enable/disable calculation of mean free paths for nucleus-nucleus collisions via
the corresponding external hadronic interactions model.

If the switch is set to Off then the nucleus-nucleus mean free paths are evaluated using an
AIRES built-in procedure. In this case the mean free paths are obtained by scaling properly the
corresponding proton-nucleus mean free path.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

FileDirectory
Syntax: FileDirectory dopt directory
Default: The output and scratch directories default to the current (working) directory. The

global and export directories default to the current value of the output directory.

(d) This directive sets the output file directories. dopt is a character string that can take any one
of the following values: All, Output, Global, Export, or Scratch. These alternatives
permit setting all the AIRES directories defined in section 3.3.2 (page 50). The option All can
be used to simultaneously set the “output” (compressed file), “global” and “export” directories.
directory is a character string not longer than 94 characters that must be recognized by the
operating system as a valid directory.

FirstShowerNumber
Syntax: FirstShowerNumber fshowerno
Default: FirstShowerNumber 1

(s) A positive integer in the range [1, 759375] indicating the number to be assigned to the first
simulated shower. The shower number is used in tables 5000 to 5513, and in the “beginning of
shower” and “end of shower” compressed file records (for details see chapter 4).

ForceInit
Syntax: ForceInit [{ On | Off }]
Default: ForceInit is equivalent to ForceInit On

ForceInit Off is assumed in case of missing specification.

(d) If ForceInit is enabled, then a new task is started at the beginning of every process. If
the corresponding IDF file exists, then the task version is increased until an unused version is
found. This directive is useful for debugging purposes.

APPENDIX B. IDL REFERENCE MANUAL 115

ForceLowEAnnihilation
Syntax: ForceLowEAnnihilation opt
Default: ForceLowEAnnihilation Normal

ForceLowEAnnihilation with no specification is equivalent to
ForceLowEAnnihilation Always.

(s,h) Directive to control the action to take when processing a low energy particle that can anni-
hilate with its respective anti-particle. The variable opt can take the values Always, Never, or
Normal. The first two alternatives correspond, respectively, to the cases where the low energy
particles will always be forced to annihilation or be discarded without producing any secondary
particle. In the (default) Normal option the action to take for annihilating low energy particles
depends on the particle cut energy and mass: If the cut energy is less (greater) than the rest
mass then the particle is (is not) forced to annihilation.

ForceLowEDecays
Syntax: ForceLowEDecays opt
Default: ForceLowEDecays Normal

ForceLowEDecays with no specification is equivalent to ForceLowEDecays
Always.

(s,h) Directive to control the action to take when processing a low energy unstable particle
that can decay into other particles. The variable opt can take the values Always, Never, or
Normal. The first two alternatives correspond, respectively, to the cases where the low energy
particles will always be forced to decays or be dicarded without producing any secondary parti-
cle. In the (default) Normal option the action to take for decaying low energy particles depends
on the particle cut energy and mass: If the cut energy is less (greater) than the rest mass then
the particle is (is not) forced to decays.

ForceModelName
Syntax: ForceModelName modsel
Default: No model name check is performed when this directive is not used.

(s) This directive allows the user to force that a given input data set will be processed with
the simulation program linked with the external collision package specified with modsel. Cur-
rently modsel can be one of (case dependent!) EPOS-LHC3400, EPOS1990, QGSJET-II-04,
QGSJET-II-03, SIBYLL23c, SIBYLL231, or SIBYLL21. This directive is useful as a security
tool to allow execution of simulations only if the executable being used is the one that corre-
sponds to the selected hadronic model. Consider also using it together with StopOnError.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

116 APPENDIX B. IDL REFERENCE MANUAL

GammaCutEnergy
Syntax: GammaCutEnergy energy
Default: GammaCutEnergy 80 KeV

(s) Minimum energy for gammas. Every gamma ray having an energy below this threshold is
not taken into account in the simulation. energy must be greater than or equal to 80 keV.

GammaRoughCut
Syntax: GammaRoughCut energy
Default: GammaRoughCut 750 KeV

(s) Gamma rays are not followed using detailed calculations when their energy is below the
one specified by means of this directive. This means that several processes are not taken into
account, for example pair production. energy must be greater than or equal to 45 keV.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

GeomagneticField
Syntax: GeomagneticField [{ On | Off }]

GeomagneticField stg [inc [dec]] [Fluctuations fluc]
GeomagneticField [On] Fluctuations fluc

Default: GeomagneticField Off when there is no Site specification;
GeomagneticField On otherwise.

(s) Setting the geomagnetic field manually and/or enabling magnetic fluctuations. stg must be
a valid magnetic field strength specification, and inc and dec are angle specifications. Such
fields correspond respectively to the geomagnetic field strength, F, and to the inclination, I, and
declination, D, angles defined in section 2.1.5 (page 17). When one or more of such parameters
are entered by means of the GeomagneticField directive, they override the respective values
that are calculated automatically using the IGRF model [15], as explained in section 3.3.5 (page
56). The fluctuation specification fluc adopts three different formats: (i) Absolute: In this case
fluc represents a (positive) magnetic field strength. (ii) Relative: fluc adopts the format number
Relative, and refers to the ratio between the actual fluctuation strength and the average value of
the magnetic field. (iii) In percent: fluc adopts the format number %. number corresponds to
a relative specification multiplied by 100. The effect of magnetic field fluctuations is explained
in section 3.3.5 (page 56).

APPENDIX B. IDL REFERENCE MANUAL 117

GroundAltitude
Syntax: GroundAltitude altdepth

GroundDepth altdepth
Default: The altitude of the site currently in effect.

(s) Ground level altitude. altdepth can be either a length specification (ranging from 0 to 112
km) or an atmospheric depth specification (ranging from 0 to 1033 g/cm2).

Help
Syntax: Help [{ * | tables | sites }]

help [{ * | tables | sites }]
? [{ * | tables | sites }]

(d) The action of the Help directive is to type a brief summary of IDL directives, output data
tables (histograms) or sites defined in the AIRES site library. Help * gives a full IDL directive
list, including all “hidden” directives. The ? form is equivalent to the combined action of Help
and Prompt On

Import
Syntax: Import [{ Dynamic | Static }] varname
Default: No environmental variables are imported by default.

(d) Importing environment variables. The operating system environment variable varname is
imported and stored as an active variable that can either be used within the IDL input stream
or passed to the compressed output files or special primary modules. The Dynamic qualifier
(default) indicates the dynamic character of the corresponding variable. This means that the
value currently passed to the external modules is modified each time AIRES is invoked for a
given task. On the other hand, Static variables are set at the first invocation of AIRES; and
further settings have no effect.

ImportShell
Syntax: ImportShell [{ Dynamic | Static }] pname shell_instruction
Default: Nothing imported by default.

(d) Importing the output of shell commands. The data written to standard output when the
operating system executes the instruction shell_instruction is imported and stored as the active
variable pname that can either be used within the IDL input stream or passed to the compressed
output files or special primary modules. The Dynamic qualifier (default) indicates the dynamic
character of the corresponding variable. This means that the value currently passed to the
external modules can be modified each time AIRES is invoked for a given task. On the other
hand, Static variables are set at the first invocation of AIRES; and further settings have no
effect.

118 APPENDIX B. IDL REFERENCE MANUAL

InjectionAltitude
Syntax: InjectionAltitude altdepth

InjectionDepth altdepth
Default: InjectionAltitude 100 km

(s) Primary injection altitude. altdepth can be either a length specification (ranging from 0 to
112 km) or an atmospheric depth specification (ranging from 0 to 1033 g/cm2).

Input
Syntax: Input file [arg1 [arg2 [. . .]]]

(d) File file is inserted in the input data stream. Input directives can be nested. The search path
for locating input files include the “working directory” (see section 3.3.2), the directories that
are included by default, and all the directories that were specified with directive InputPath.
Optionally, it is possible to pass arguments to the included file. They are assigned to global
variables named “1”, “2”, ..., and will be visible for the directives placed within file.

InputListing
Syntax: InputListing [{ Brief | Full }]
Default: InputListing is equivalent to InputListing Brief

InputListing Brief is assumed in case of missing specification.

(d) Data related to hidden input directives are not printed in the output summary file unless the
corresponding variables were explicitly set or InputListing Full was specified.

InputPath
Syntax: InputPath [{ Insert | Append }] [dir1[:dir2[: . . .]]]
Default: The file search path contains by default the “working directory”, and the

directories coming with the AIRES distribution that contain input files and/or
executable modules that could be invoked from within a set of IDL directives.

(d) Modifying the directory search path for the files included with the Input directive and/or
other directives that request external files. This directive can be used multiple times if required.
Different search directories can be specified in a single invocation separating them with colons
(:) with no embedded blanks. The keyword Append indicates that the specified directory(ies)
must be appended to the ones already inserted, while Insert indicates that such directory(ies)
must be inserted at the beginning of the current path string. If InputPath is invoked with no
arguments, then the search path is cleared.

APPENDIX B. IDL REFERENCE MANUAL 119

LaTeX
Syntax: LaTeX [{ On | Off }]
Default: LaTeX is equivalent to LaTeX On

LaTeX Off is assumed in case of missing specification.

(d) If LaTeX On is specified, then the output summary file is written using the LATEX word
processor format. Otherwise it is written as a plain text file. When this option is enabled, a TEX
file taskname.tex is created simultaneously with the summary file.

LPMEffect
Syntax: LPMEffect [{ On | Off }]
Default: LPMEffect is equivalent to LPMEffect On

LPMEffect On is assumed in case of missing specification.

(s,h) Switch to include/exclude the Landau-Pomeranchuk-Migdal effect [30, 25] from the elec-
tron-positron and gamma propagating algorithms. The effect is enabled by default. Disabling
it may lead to non realistic air shower simulations. If LPMEffect Off is in effect, then the
dielectric suppression is also disabled (see page 111).

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MaxCpuTimePerRun
Syntax: MaxCpuTimePerRun { time | Infinite }
Default: MaxCpuTimePerRun Infinite

(d) This directive sets the maximum CPU time for individual runs, being a run the processing
chunk that goes between two consecutive updates of the internal dump file. This parameter
does not impose any restriction on the CPU time available for the simulation of a single shower
(or a group of them), which is always infinite. time is any valid time specification. See also
directives RunsPerProcess and ShowersPerRun.

MesonCutEnergy
Syntax: MesonCutEnergy energy
Default: MesonCutEnergy 60 MeV

(s) Minimum kinetic energy for mesons (pions, kaons, etc.). Every meson having a kinetic
energy below this threshold is not taken into account in the simulation; unstable particles are
forced to decays. energy must be greater than or equal to 500 keV.

MFPHadronic
Syntax: MFPHadronic mfpsel

(s) Directive to select among different sets of mean free paths parameterizations. mfpsel is a

120 APPENDIX B. IDL REFERENCE MANUAL

character string that identifies the set to be used (see page 61).

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MFPThreshold
Syntax: MFPThreshold energy
Default: MFPThreshold 50 GeV

(s,h) Threshold energy for the currently effective mean free paths. All hadronic collisions
with energy greater than or equal to this threshold will be processed using the current mfp
parameterization (that can be set using directive MFPHadronic); otherwise standard MFP’s
will be used. energy must be greater than or equal to 200 MeV.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MinExtCollEnergy
Syntax: MinExtCollEnergy energy
Default: MinExtCollEnergy 200 GeV for the SIBYLL model;

MinExtCollEnergy 80 GeV for the QGSJET model.

(s,h) Threshold energy for invoking the external hadronic collision routine (if enabled). energy
must be greater than or equal to 25 GeV.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MinExtNucCollEnergy
Syntax: MinExtNucCollEnergy energypernucleon
Default: MinExtCollEnergy 200 GeV for the SIBYLL model;

MinExtCollEnergy 80 GeV for the QGSJET model.

(s,h) Threshold energy per nucleon for invoking the external nucleus-nucleus collision routine
(if enabled). energypernucleon must be greater than or equal to 25 GeV.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MuonBremsstrahlung
Syntax: Muonbremsstrahlung [{ On | Off }]
Default: Muonbremsstrahlung is equivalent to Muonbremsstrahlung On

Muonbremsstrahlung On is assumed in case of missing specification.

(s,h) Switch to include/exclude the muon bremsstrahlung [24] and muonic pair production
processes from the muon propagating algorithms. These interactions are enabled by default.

APPENDIX B. IDL REFERENCE MANUAL 121

Disabling them may lead to non realistic air shower simulations.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

MuonCutEnergy
Syntax: MuonCutEnergy energy
Default: MuonCutEnergy 10 MeV

(s) Minimum kinetic energy for muons. Every muon having a kinetic energy below this thresh-
old is not taken into account in the simulation; it is forced to a decay. energy must be greater
than or equal to 500 keV.

NuclCollisions
Syntax: NuclCollisions [{ On | Off }]
Default: NuclCollisions is equivalent to NuclCollisions On

NuclCollisions On is assumed in case of missing specification.

(s,h) Switch to include/exclude the hadronic inelastic collisions with air nucleus from the heavy
particles propagating algorithms. The collisions are enabled by default. Disabling them may
lead to non realistic air shower simulations.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

NuclCutEnergy
Syntax: NuclCutEnergy energy
Default: NuclCutEnergy 120 MeV

(s) Minimum kinetic energy for nucleons and nuclei. Every such particle having a kinetic
energy below this threshold is not taken into account in the simulation. energy must be greater
than or equal to 500 keV.

ObservingLevels
Syntax: ObservingLevels nofol [altdepth1 altdepth2]
Default: ObservingLevels 19

(s) This directive defines the number and position of the observing levels used for longitudinal
development recording (see page 23) . altdepth1 and altdepth2 are altitude (or atmospheric
depth) specifications that define the positions of the first and last observing levels. nofol is an
integer that sets the number of observing levels. It must lie in the range [4, 510]. The observing
levels are equally spaced in atmospheric depth units. The first (last) level corresponds to the
highest (lowest) altitude.

122 APPENDIX B. IDL REFERENCE MANUAL

If altdepth1 and altdepth2 are not specified, then the observing levels are placed between the
injection and ground planes, but spacing them differently (see section 3.3.3): The injection
level corresponds to observing level “0” while the ground level corresponds to observing level
“nofol + 1”. For example, if the injection (ground) level is placed at 0 (1000) g/cm2, the
directive ObservingLevels 19 will set 19 observing levels placed at depths 50, 100, 150, . . . ,
950 g/cm2.

OutputListing
Syntax: OutputListing [{ Brief | Full }]
Default: OutputListing is equivalent to OutputListing Brief

OutputListing Brief is assumed in case of missing specification.

(d) Hidden output data items are not printed in the output summary file unless OutputListing
Full is specified.

PerShowerData
Syntax: PerShowerData option
Default: PerShowerData is equivalent to PerShowerData Full

PerShowerData Brief is assumed in case of missing specification.

(s) Directive to control the amount of individual shower data to be stored after each shower is
completed. option is a character string that can take any one of the following values: None,
Brief or Full. When None is specified, no individual shower data is saved. The Brief level
implies saving global parameters such as the depth of shower maximum Xmax, for example;
and the Full level is the Brief level plus all the single shower tables (see page 113).

PhotoNuclear
Syntax: PhotoNuclear [{ On | Off }]
Default: PhotoNuclear is equivalent to PhotoNuclear On

PhotoNuclear On is assumed in case of missing specification.

(s,h) Switch to include/exclude the inelastic collisions gamma-air nucleus (photonuclear re-
actions) from the gamma ray propagating algorithms. The collisions are enabled by default.
Disabling them may lead to non realistic air shower simulations.

This directive belongs to the model-dependent IDL instruction set and may be changed or not
implemented in future versions of AIRES.

APPENDIX B. IDL REFERENCE MANUAL 123

PrimaryAzimAngle
Syntax: PrimaryAzimAngle minang [maxang] [{ Magnetic | Geographic }]
Default: PrimaryAzimAngle 0 deg Magnetic if the zenith angle is fixed;

PrimaryAzimAngle 0 deg 360 deg Magnetic otherwise
(see PrimaryZenAngle).

(s) Primary azimuth angle. The angle for each shower is selected with uniform probability
distribution in the interval [minang, maxang]. If the angle maxang is not specified, it is taken
equal to minang (fixed azimuth angle). The Geographic keyword indicates that the specified
azimuth is measured with respect to the geographic north, positive for eastwards directions; in
this case the azimuth angle used by AIRES is obtained applying equation (3.8). If no keyword
or the Magnetic keyword is specified, then the origin for the azimuths is the magnetic north,
and the given angles are interpreted accordingly with the orientation of the AIRES coordinate
system defined in section 2.1.1 (page 9).

PrimaryEnergy
Syntax: PrimaryEnergy minener [maxener [gamma]]
Default: None.

(s) Energy of primary. If only minener is specified then all primaries have a fixed energy equal
to this parameter. Otherwise the energy will be sampled from the interval [Emin, Emax] =
[minener, maxener] with the probability distribution of equation (3.2) with exponent γ option-
ally specified by gamma.

The primary energy must be larger than 500 MeV and less than 3 × 1012 GeV (3 × 1021 eV).
There are no restrictions on γ. If not specified it is set to 1.7.

PrimaryParticle
Syntax: PrimaryParticle particle [weight]
Default: None. This directive is always required.

(s) Primary particle specification. particle is the particle name. Proton, Iron, Feˆ56, etc. are
valid particle names. Special particle names defined by means of directive AddSpecialParticle
can also be used with this instruction. If more than one PrimaryParticle directive appear
within the input instructions, then the primary particles will be selected at random among the
different specified particle kinds, with probabilities proportional to the weights specified in the
corresponding weight fields. If weight is not specified, then the particle weight is taken as 1.

124 APPENDIX B. IDL REFERENCE MANUAL

PrimaryZenAngle
Syntax: PrimaryZenAngle minang [maxang [{ S | SC | CS }]]
Default: PrimaryZenAngle 0 deg

(s) Primary zenith angle, Θ. If only minang is specified, then the zenith angle is fixed and equal
to this value, and the default for the azimuth angle will be 0. Otherwise the zenith angle for each
shower is selected randomly within the interval [minang, maxang], with the sine probability
distribution of equation (3.4), which is proportional to sin Θ (default or S specification), or the
sine-cosine probability distribution of equation (3.6), which is proportional to sin Θ cos Θ (SC
or CS specifications). In this case the default for the azimuth angle is PrimaryAzimAngle 0
deg 360 deg. Both minang and maxang must belong to the interval [0◦, 90◦).

PrintTables
Syntax: PrintTables mincode [maxcode] [Options optstring]

PrintTables Clear
Default: No tables are printed by default.

(d) Tables whose codes range from mincode to maxcode are selected for being displayed in the
summary output file. If maxcode is not specified, it is taken equal to mincode. The table codes
are integers. A complete list of available tables (more than 180) is placed in appendix C (page
132), or can be obtained with directives Help tables and/or TableIndex. The Clear option per-
mits clearing the list of printed tables, thus overriding all the previous PrintTables directives.
opstring is a string of characters to set available options: n suppress plotting minimum (<) and
maximum (>) characters; m include minimum and maximum plots in the tables; M do not in-
sert character plots, make a completely numerical table instead; S (R) use standard deviations
(RMS errors of the means) to plot error bars; r (d) normal (density) lateral distributions; L (l)
distributions normalized as d/d log10 (d/d ln). The default options are: nSr.

Prompt
Syntax: Prompt [{ On | Off }]
Default: Prompt is equivalent to Prompt On

Prompt Off is assumed in case of missing specification.

(d) Turns prompting on/off. This directive is meaningful only in interactive sessions.

PropagatePrimary
Syntax: PropagatePrimary [{ On | Off }]
Default: PropagatePrimary is equivalent to PropagatePrimary On

PropagatePrimary On is assumed in case of missing specification.

(s,h) This directive controls the initial propagation of the primary. If the On option is selected
(the default), then the primary is normally advanced before the first interaction takes place, and

APPENDIX B. IDL REFERENCE MANUAL 125

therefore the first interaction altitude will be variable. Otherwise the first interaction will be
forced to occur at the injection altitude.

This directive is ignored for showers initiated by special primaries (see section 3.5).

RandomSeed
Syntax: RandomSeed seed

RandomSeed GetFrom idfile
Default: RandomSeed 0.0

(s) This directive sets the random number generator seed. seed is a real number. If it belongs
to the interval (0, 1) then the seed is effectively taken as the given number. Otherwise it is
evaluated internally (using the system clock). The alternative syntax with the keyword Get-
From allows extracting the random generator seed from an already existing internal dump file.
This is most useful to reproducing a previous simulation repeating the original random number
simulator configuration.

RecordObsLevels
Syntax: RecordObsLevels [Not] [lev1 [lev2 [step]]]

RecordObsLevels [Not] { All | All/step | None }
Default: RecordObsLevels All

(s) Directive to mark a certain subset of the defined observing levels for inclusion (or exclusion)
in the set of levels that are included in the longitudinal tracking compressed particle file. The
integer variables lev1 lev2 and step are the arguments of a FORTRAN do loop which starts at
lev1, ends at lev2 advancing in steps of step. The keyword Not indicates that the corresponding
levels must be excluded for being recorded in the file. If lev2 and/or step are not indicated they
default to lev1 and 1 respectively. RecordObsLevels All/step is a short form for RecordOb-
sLevels 1 No step, where No is the number of defined observing levels. RecordObsLevels All
is equivalent to RecordObsLevels All/1 while RecordObsLevels None can be used in place
of RecordObsLevels Not All. This directive can be repeatedly used within an input instruction
stream to mark or unmark arbitrary subsets of observing levels, as explained in page 86.

RecordSpecPrimaries
Syntax: RecordSpecPrimaries [{ On | Off }]
Default: RecordSpecPrimaries is equivalent to RecordSpecPrimaries On

RecordSpecPrimaries On is assumed in case of missing specification.

(s) Directive to enable or disable recording in the compressed output files the list of special
primary particles injected at the beginning of each shower.

126 APPENDIX B. IDL REFERENCE MANUAL

Remark
Syntax: Remark string

Remark &label
First line of remarks.
. . .
Last line of remarks.
&label

(s) Remarks directive. Each time this directive appears in the input data stream, the correspond-
ing remark string(s) are appended to the remarks text. All the entered remarks will be printed
in the log and summary files, and stored in different output data files. There is no limit in the
number of remark lines, but every line cannot be longer than 75 characters. Notice that the
Echo (111) directive can also be used if what is needed is to type a message to standard output
while the AIRES input file(s) are being processed.

ResamplingRatio
Syntax: ResamplingRatio rsratio
Default: ResamplingRatio 10

(s) This directive sets the variable sr used in the resampling algorithm defined in section 4.2.1
(page 82). rsratio is a real number that must be greater or equal than 1.

RLimsFile
Syntax: RLimsFile filext rmin rmax
Default: RLimsFile grdpcles 250 m 12 km
Default: RLimsFile any_other_file 0 m 12 km

(s) This directive defines the lateral limits for the compressed data file whose extension is filext.
For the ground particle file, rmin and rmax define, together with the resampling ratio that is
controlled by the IDL instruction ResamplingRatio the radial limits of the zone where the
particles are going to be saved (see page 82). In the case of longitudinal tracking particle files,
those parameters define the inclusion zone at ground level. At an arbitrary altitude, the particles
are included accordingly with the rules explained in section 4.2.1 (page 76).

RLimsTables
Syntax: RLimsTables rmin rmax
Default: RLimsTables 50 m 2 km

(s) This directive defines the radial interval to use in the lateral distribution tables (histograms).
Each lateral distribution histogram consists of 40 logarithmic bins starting with rmin (lower
radius of bin 1) and ending with rmax (upper radius of bin 40).

APPENDIX B. IDL REFERENCE MANUAL 127

RunsPerProcess
Syntax: RunsPerProcess { number | Infinite }
Default: RunsPerProcess Infinite

(d) Number of runs within a process (see also MaxCpuTimePerRun and ShowersPerRun).

SaveInFile
Syntax: SaveInFile filext particle1 [particle2] . . .
Default: SaveInFile grdpcles All

SaveInFile lgtpcles None

(s) This directive allows to control the particles being saved in the compressed file whose exten-
sion is filext (see directive RLimsFile). particle1, particle2, . . . , are valid particle or particle
group names. This directive, together with SaveNotInFile are useful to save output file space
in certain circumstances.

SaveNotInFile
Syntax: SaveNotInFile filext particle1 [particle2] . . .

(s) The syntax of this directive is similar to SaveInFile, and its meaning is opposite (SaveInFile
filext None is equivalent to SaveNotInFile filext All).

SeparateShowers
Syntax: SeparateShowers { Off | number }
Default: SeparateShowers Off

(s) In a task involving more than one shower, the compressed output files can be split into
several pieces each one storing the data corresponding to number showers. In particular, Sepa-
rateShowers 1 generates one compressed file per shower while SeparateShowers Off disables
file splitting.

SetGlobal
Syntax: SetGlobal [{ Dynamic | Static }] varname value
Default: No environmental variables are imported by default.

(d) Setting global variables. The variable varname is set to the string value. If the variable was
already set, then its old setting is superseded. The defined variables can either be used within
the IDL input stream or passed to the compressed output files or special primary modules. The
Dynamic qualifier (default) indicates the dynamic character of the corresponding variable. This
means that the value currently passed to the external modules is modified each time AIRES is
invoked for a given task. On the other hand, Static variables are set at the first invocation of
AIRES; and further settings have no effect.

128 APPENDIX B. IDL REFERENCE MANUAL

SetTimeAtInjection
Syntax: SetTimeAtInjection [{ On | Off }]
Default: SetTimeAtInjection is equivalent to SetTimeAtInjection On

SetTimeAtInjection On is assumed in case of missing specification.

(s,h) Directive to set whether the time count for each shower is started at the moment of inject-
ing the primary particle (On) or at its first interaction (Off).

This directive is ignored for showers initiated by special primaries (see section 3.5).

SetTopAtInjection
Syntax: SetTopAtInjection [{ On | Off }]
Default: SetTopAtInjection is equivalent to SetTopAtInjection On

SetTopAtInjection On is assumed in case of missing specification.

(d) When this switch is enabled, the top surface of the shower bounding box is set accordingly
with the atmospheric depth of the primary injection point. Otherwise it is set accordingly with
the depth of the first primary interaction.

Shell
Syntax: Shell shell_instruction

Shell shell_instruction « input_file
Shell shell_instruction « &label
. . . (lines with input data)
&label

(d) Executing a given shell instruction. The string shell_instruction is passed to the operating
system to have it executed within the current shell interpreter. It is optionally possible to specify
a input data file or, alternatively, place such input data as a here-document delimited by a label
&label.

ShowersPerRun
Syntax: ShowersPerRun { number | Infinite }
Default: ShowersPerRun Infinite

(d) Maximum number of showers in a run (see also MaxCpuTimePerRun and RunsPerPro-
cess). Notice that this parameter is related with the computer environment only and does not
affect the total number of showers that define a task (see TotalShowers).

APPENDIX B. IDL REFERENCE MANUAL 129

Site
Syntax: Site name
Default: Site Site00

(s) The Site directive specify the geographical location that define the environment (latitude,
longitude and altitude) where the simulations take place. name is a string identifying the se-
lected site. It must either be one of the predefined sites of the AIRES site library, listed in table
3.4 (page 57), or have been previously defined by means of the AddSite directive.

Skip
Syntax: Skip &label

(d) Instruction to skip part of an input data stream. All directives placed after the Skip statement
and before &label are skipped. Notice that this is not a “go to” statement: It is only possible to
skip forwards, never backwards.

SpecialParticLog
Syntax: SpecialParticLog lvl
Default: SpecialParticLog is equivalent to SpecialParticLog 1

SpecialParticLog 0 is assumed in case of missing specification.

(d) Controlling the amount of data related with special primary particles to be saved in the
corresponding log file. lvl is an integer parameter that can take the following values:

0 No information written in the log file.
1 Messages before and after invoking the external module.
2 Level 1 plus detailed list of valid primaries.

SPMaxFieldsToAdd
Syntax: SPMaxFieldsToAdd mxdynfields
Default: SPMaxFieldsToAdd 0

(s) Sets the maximum number of fields that can be dynamically added to the AIRES compressed
output files.

StackInformation
Syntax: StackInformation [{ On | Off }]
Default: StackInformation is equivalent to StackInformation On

StackInformation Off is assumed in case of missing specification.

(d) Directive to instruct AIRES to print detailed stack usage information in the summary output
file.

130 APPENDIX B. IDL REFERENCE MANUAL

StopOnError
Syntax: StopOnError [{ On | Off }]
Default: StopOnError is equivalent to StopOnError On

StopOnError Off is assumed in case of missing specification.

(d) Directive to enable or disable the “stop-on-error” condition. When this condition is in
effect, the severity of every error that could happen while parsing the AIRES IDL directives
is set to the maximum level (fatal error). In consequence, the simulation program will always
abort if there are errors within the input instructions. This directive is useful as a security tool
to allow execution of simulations only if the input files do not contain instructions with errors.
Consider also using it together with ForceModel.

Summary
Syntax: Summary [{ On | Off }]
Default: Summary is equivalent to Summary On

Summary On is assumed in case of missing specification.

(d) Directive to enable or disable the output summary.

TableIndex
Syntax: TableIndex [{ On | Off }]
Default: TableIndex is equivalent to TableIndex On

TableIndex Off is assumed in case of missing specification.

(d) Directive to instruct AIRES to print a table index in the summary output file.

TaskName
Syntax: TaskName [Append] taskname [taskversion]
Default: TaskName GIVE_ME_A_NAME_PLEASE

(d) Task name assignment. taskname is a character string which identifies the current task. If
its length is greater than 64 characters, it will be truncated to the first 64 characters. taskversion
is an optional integer between 0 (default) and 999. If taskversion is not zero, the effective task
name is taskname_taskversion. If the keyword Append is used, then taskname is appended to
the existing task name string. The task name is used to set the file names of all output files.

ThinningEnergy
Syntax: ThinningEnergy { energy | number Relative }
Default: ThinningEnergy 1.0e-4 Relative

(s) Thinning energy. It can be expressed either as an absolute energy or as a real (positive)
number with the keyword Relative (In this case the thinning energy is the primary energy
times the specified number).

APPENDIX B. IDL REFERENCE MANUAL 131

ThinningWFactor
Syntax: ThinningWFactor number
Default: ThinningWFactor 12

(s,h) Thinning weight factor. This instruction permits setting the weight factor Wf of equation
(2.23).

TotalShowers
Syntax: TotalShowers nofshowers
Default: None. This directive is always required.

(d) Total number of showers. nofshowers is a positive integer in the range [1, 759375] defin-
ing the number of showers to be simulated in the current task. Notice that this is a dynamic
parameter, that is, it can be modified (either enlarged or reduced) during the simulations.

Trace
Syntax: Trace [{ On | Off }]
Default: Trace is equivalent to Trace On

Trace Off is assumed in case of missing specification.

(d) Directive to enable or disable input data tracing. If enabled (On) then trace information
about the directives being processed by the IDL parser is written into the standard output chan-
nel. This directive is useful to debug IDL input data sets.

TSSFile
Syntax: TSSFile [{ On | Off }]
Default: TSSFile is equivalent to TSSFile On

TSSFile Off is assumed in case of missing specification.

(d) If TSSFile On is specified, then a task summary script file will be generated upon task
completion. The task summary script file (TSS) is a plain text file containing information about
the main parameters of the simulation, in the format Keyword = value, suitable for processing
with other programs.

Appendix C

Output data table index

We list here all the tables defined in AIRES 19.04.10. These tables can be processed using directives
PrintTables and/or ExportTables (see chapter 3).

Code Table name

1 0100 Atmospheric profile.

2 1001 Longitudinal development: Gamma rays.
3 1005 Longitudinal development: Electrons.
4 1006 Longitudinal development: Positrons.
5 1007 Longitudinal development: Muons (+).
6 1008 Longitudinal development: Muons (−).
7 1011 Longitudinal development: Pions (+).
8 1012 Longitudinal development: Pions (−).
9 1013 Longitudinal development: Kaons (+).

10 1014 Longitudinal development: Kaons (−).
11 1021 Longitudinal development: Neutrons.
12 1022 Longitudinal development: Protons.
13 1023 Longitudinal development: Antiprotons.
14 1041 Longitudinal development: Nuclei.
15 1091 Longitudinal development: Other charged pcles.
16 1092 Longitudinal development: Other neutral pcles.
17 1205 Longitudinal development: e+ and e−
18 1207 Longitudinal development: mu+ and mu−
19 1211 Longitudinal development: pi+ and pi−
20 1213 Longitudinal development: K+ and K−
21 1291 Longitudinal development: All charged particles.
22 1292 Longitudinal development: All neutral particles.
23 1293 Longitudinal development: All particles.

132

APPENDIX C. OUTPUT DATA TABLE INDEX 133

Code Table name

24 1301 Unweighted longit. development: Gamma rays.
25 1305 Unweighted longit. development: Electrons.
26 1306 Unweighted longit. development: Positrons.
27 1307 Unweighted longit. development: Muons (+).
28 1308 Unweighted longit. development: Muons (−).
29 1311 Unweighted longit. development: Pions (+).
30 1312 Unweighted longit. development: Pions (−).
31 1313 Unweighted longit. development: Kaons (+).
32 1314 Unweighted longit. development: Kaons (−).
33 1321 Unweighted longit. development: Neutrons.
34 1322 Unweighted longit. development: Protons.
35 1323 Unweighted longit. development: Antiprotons.
36 1341 Unweighted longit. development: Nuclei.
37 1391 Unweighted longit. development: Other charged pcles.
38 1392 Unweighted longit. development: Other neutral pcles.
39 1405 Unweighted longit. development: e+ and e−
40 1407 Unweighted longit. development: mu+ and mu−
41 1411 Unweighted longit. development: pi+ and pi−
42 1413 Unweighted longit. development: K+ and K−
43 1491 Unweighted longit. development: All charged particles.
44 1492 Unweighted longit. development: All neutral particles.
45 1493 Unweighted longit. development: All particles.

46 1501 Longitudinal development: Energy of gamma rays.
47 1505 Longitudinal development: Energy of electrons.
48 1506 Longitudinal development: Energy of positrons.
49 1507 Longitudinal development: Energy of muons (+).
50 1508 Longitudinal development: Energy of muons (−).
51 1511 Longitudinal development: Energy of pions (+).
52 1512 Longitudinal development: Energy of pions (−).
53 1513 Longitudinal development: Energy of kaons (+).
54 1514 Longitudinal development: Energy of kaons (−).
55 1521 Longitudinal development: Energy of neutrons.
56 1522 Longitudinal development: Energy of protons.
57 1523 Longitudinal development: Energy of antiprotons.
58 1541 Longitudinal development: Energy of nuclei.
59 1591 Longitudinal development: Energy of other charged particles.
60 1592 Longitudinal development: Energy of other neutral particles.
61 1705 Longitudinal development: Energy of e+ and e−
62 1707 Longitudinal development: Energy of mu+ and mu−
63 1711 Longitudinal development: Energy of pi+ and pi−
64 1713 Longitudinal development: Energy of K+ and K−

134 APPENDIX C. OUTPUT DATA TABLE INDEX

Code Table name

65 1791 Longitudinal development: Energy of all charged particles.
66 1792 Longitudinal development: Energy of all neutral particles.
67 1793 Longitudinal development: Energy of all particles.

68 2001 Lateral distribution: Gamma rays.
69 2005 Lateral distribution: Electrons.
70 2006 Lateral distribution: Positrons.
71 2007 Lateral distribution: Muons (+).
72 2008 Lateral distribution: Muons (−).
73 2011 Lateral distribution: Pions (+).
74 2012 Lateral distribution: Pions (−).
75 2013 Lateral distribution: Kaons (+).
76 2014 Lateral distribution: Kaons (−).
77 2021 Lateral distribution: Neutrons.
78 2022 Lateral distribution: Protons.
79 2023 Lateral distribution: Antiprotons.
80 2041 Lateral distribution: Nuclei.
81 2091 Lateral distribution: Other charged pcles.
82 2092 Lateral distribution: Other neutral pcles.
83 2205 Lateral distribution: e+ and e−
84 2207 Lateral distribution: mu+ and mu−
85 2211 Lateral distribution: pi+ and pi−
86 2213 Lateral distribution: K+ and K−
87 2291 Lateral distribution: All charged particles.
88 2292 Lateral distribution: All neutral particles.
89 2293 Lateral distribution: All particles.

90 2301 Unweighted lateral distribution: Gamma rays.
91 2305 Unweighted lateral distribution: Electrons.
92 2306 Unweighted lateral distribution: Positrons.
93 2307 Unweighted lateral distribution: Muons (+).
94 2308 Unweighted lateral distribution: Muons (−).
95 2311 Unweighted lateral distribution: Pions (+).
96 2312 Unweighted lateral distribution: Pions (−).
97 2313 Unweighted lateral distribution: Kaons (+).
98 2314 Unweighted lateral distribution: Kaons (−).
99 2321 Unweighted lateral distribution: Neutrons.

100 2322 Unweighted lateral distribution: Protons.
101 2323 Unweighted lateral distribution: Antiprotons.
102 2341 Unweighted lateral distribution: Nuclei.
103 2391 Unweighted lateral distribution: Other charged pcles.
104 2392 Unweighted lateral distribution: Other neutral pcles.
105 2405 Unweighted lateral distribution: e+ and e−

APPENDIX C. OUTPUT DATA TABLE INDEX 135

Code Table name

106 2407 Unweighted lateral distribution: mu+ and mu−
107 2411 Unweighted lateral distribution: pi+ and pi−
108 2413 Unweighted lateral distribution: K+ and K−
109 2491 Unweighted lateral distribution: All charged particles.
110 2492 Unweighted lateral distribution: All neutral particles.
111 2493 Unweighted lateral distribution: All particles.

112 2501 Energy distribution at ground: Gamma rays.
113 2505 Energy distribution at ground: Electrons.
114 2506 Energy distribution at ground: Positrons.
115 2507 Energy distribution at ground: Muons (+).
116 2508 Energy distribution at ground: Muons (−).
117 2511 Energy distribution at ground: Pions (+).
118 2512 Energy distribution at ground: Pions (−).
119 2513 Energy distribution at ground: Kaons (+).
120 2514 Energy distribution at ground: Kaons (−).
121 2521 Energy distribution at ground: Neutrons.
122 2522 Energy distribution at ground: Protons.
123 2523 Energy distribution at ground: Antiprotons.
124 2541 Energy distribution at ground: Nuclei.
125 2591 Energy distribution at ground: Other charged pcles.
126 2592 Energy distribution at ground: Other neutral pcles.
127 2705 Energy distribution at ground: e+ and e−
128 2707 Energy distribution at ground: mu+ and mu−
129 2711 Energy distribution at ground: pi+ and pi−
130 2713 Energy distribution at ground: K+ and K−
131 2791 Energy distribution at ground: All charged particles.
132 2792 Energy distribution at ground: All neutral particles.
133 2793 Energy distribution at ground: All particles.

134 2801 Unweighted energy distribution: Gamma rays.
135 2805 Unweighted energy distribution: Electrons.
136 2806 Unweighted energy distribution: Positrons.
137 2807 Unweighted energy distribution: Muons (+).
138 2808 Unweighted energy distribution: Muons (−).
139 2811 Unweighted energy distribution: Pions (+).
140 2812 Unweighted energy distribution: Pions (−).
141 2813 Unweighted energy distribution: Kaons (+).
142 2814 Unweighted energy distribution: Kaons (−).
143 2821 Unweighted energy distribution: Neutrons.
144 2822 Unweighted energy distribution: Protons.
145 2823 Unweighted energy distribution: Antiprotons.
146 2841 Unweighted energy distribution: Nuclei.

136 APPENDIX C. OUTPUT DATA TABLE INDEX

Code Table name

147 2891 Unweighted energy distribution: Other charged pcles.
148 2892 Unweighted energy distribution: Other neutral pcles.
149 2905 Unweighted energy distribution: e+ and e−
150 2907 Unweighted energy distribution: mu+ and mu−
151 2911 Unweighted energy distribution: pi+ and pi−
152 2913 Unweighted energy distribution: K+ and K−
153 2991 Unweighted energy distribution: All charged particles.
154 2992 Unweighted energy distribution: All neutral particles.
155 2993 Unweighted energy distribution: All particles.

156 3001 Mean arrival time distribution: Gamma rays.
157 3005 Mean arrival time distribution: Electrons and positrons.
158 3007 Mean arrival time distribution: Muons.
159 3091 Mean arrival time distribution: Other charged pcles.
160 3092 Mean arrival time distribution: Other neutral pcles.
161 3291 Mean arrival time distribution: All charged particles.
162 3292 Mean arrival time distribution: All neutral particles.
163 3293 Mean arrival time distribution: All particles.

164 5001 Number and energy of ground gammas versus shower number.
165 5005 Number and energy of ground e− versus shower number.
166 5006 Number and energy of ground e+ versus shower number.
167 5007 Number and energy of ground mu+ versus shower number.
168 5008 Number and energy of ground mu− versus shower number.
169 5011 Number and energy of ground pi+ versus shower number.
170 5012 Number and energy of ground pi− versus shower number.
171 5013 Number and energy of ground K+ versus shower number.
172 5014 Number and energy of ground K− versus shower number.
173 5021 Number and energy of ground neutrons versus shower number.
174 5022 Number and energy of ground protons versus shower number.
175 5023 Number and energy of ground pbar versus shower number.
176 5041 Number and energy of ground nuclei versus shower number.
177 5091 Number and energy of other grd. ch. pcles. versus shower number.
178 5092 Number and energy of other grd. nt. pcles. versus shower number.
179 5205 Number and energy of ground e+ and e− versus shower number.
180 5207 Number and energy of ground mu+ and mu− versus shower number.
181 5211 Number and energy of ground pi+ and pi− versus shower number.
182 5213 Number and energy of ground K+ and K− versus shower number.
183 5291 Number and energy of ground ch. pcles. versus shower number.
184 5292 Number and energy of ground nt. pcles. versus shower number.
185 5293 Number and energy of all ground particles versus shower number.

APPENDIX C. OUTPUT DATA TABLE INDEX 137

Code Table name

186 5501 Xmax and Nmax (charged particles) versus shower number.
187 5511 First interact. depth and primary energy versus shower number.
188 5513 Zenith and azimuth angles versus shower number.

189 6001 Number of created particles: Gamma rays.
190 6005 Number of created particles: Electrons.
191 6006 Number of created particles: Positrons.
192 6007 Number of created particles: Muons (+).
193 6008 Number of created particles: Muons (-).
194 6011 Number of created particles: Pions (+).
195 6012 Number of created particles: Pions (-).
196 6013 Number of created particles: Kaons (+).
197 6014 Number of created particles: Kaons (-).
198 6021 Number of created particles: Neutrons.
199 6022 Number of created particles: Protons.
200 6023 Number of created particles: Antiprotons.
201 6041 Number of created particles: Nuclei.
202 6091 Number of created particles: Other charged pcles.
203 6092 Number of created particles: Other neutral pcles.
204 6205 Number of created particles: e+ and e-
205 6207 Number of created particles: mu+ and mu-
206 6211 Number of created particles: pi+ and pi-
207 6213 Number of created particles: K+ and K-
208 6291 Number of created particles: All charged particles.
209 6292 Number of created particles: All neutral particles.
210 6293 Number of created particles: All particles.
211 6296 Number of created particles: All neutrinos.

212 6301 Number of created entries: Gamma rays.
213 6305 Number of created entries: Electrons.
214 6306 Number of created entries: Positrons.
215 6307 Number of created entries: Muons (+).
216 6308 Number of created entries: Muons (-).
217 6311 Number of created entries: Pions (+).
218 6312 Number of created entries: Pions (-).
219 6313 Number of created entries: Kaons (+).
220 6314 Number of created entries: Kaons (-).
221 6321 Number of created entries: Neutrons.
222 6322 Number of created entries: Protons.
223 6323 Number of created entries: Antiprotons.
224 6341 Number of created entries: Nuclei.
225 6391 Number of created entries: Other charged pcles.
226 6392 Number of created entries: Other neutral pcles.

138 APPENDIX C. OUTPUT DATA TABLE INDEX

Code Table name

227 6405 Number of created entries: e+ and e-
228 6407 Number of created entries: mu+ and mu-
229 6411 Number of created entries: pi+ and pi-
230 6413 Number of created entries: K+ and K-
231 6491 Number of created entries: All charged particles.
232 6492 Number of created entries: All neutral particles.
233 6493 Number of created entries: All particles.
234 6496 Number of created entries: All neutrinos.

235 6501 Energy of created particles: Gamma rays.
236 6505 Energy of created particles: Electrons.
237 6506 Energy of created particles: Positrons.
238 6507 Energy of created particles: Muons (+).
239 6508 Energy of created particles: Muons (-).
240 6511 Energy of created particles: Pions (+).
241 6512 Energy of created particles: Pions (-).
242 6513 Energy of created particles: Kaons (+).
243 6514 Energy of created particles: Kaons (-).
244 6521 Energy of created particles: Neutrons.
245 6522 Energy of created particles: Protons.
246 6523 Energy of created particles: Antiprotons.
247 6541 Energy of created particles: Nuclei.
248 6591 Energy of created particles: Other charged pcles.
249 6592 Energy of created particles: Other neutral pcles.
250 6705 Energy of created particles: e+ and e-
251 6707 Energy of created particles: mu+ and mu-
252 6711 Energy of created particles: pi+ and pi-
253 6713 Energy of created particles: K+ and K-
254 6791 Energy of created particles: All charged particles.
255 6792 Energy of created particles: All neutral particles.
256 6793 Energy of created particles: All particles.
257 6796 Energy of created particles: All neutrinos.

258 7001 Longitudinal development: Low energy gamma rays.
259 7005 Longitudinal development: Low energy electrons.
260 7006 Longitudinal development: Low energy positrons.
261 7007 Longitudinal development: Low energy muons (+).
262 7008 Longitudinal development: Low energy muons (-).
263 7091 Longitudinal development: Other charged low egy. pcles.
264 7092 Longitudinal development: Other neutral low egy. pcles.
265 7205 Longitudinal development: Low energy e+ and e-
266 7207 Longitudinal development: Low energy mu+ and mu-
267 7291 Longitudinal development: All low energy charged pcles.

APPENDIX C. OUTPUT DATA TABLE INDEX 139

Code Table name

268 7292 Longitudinal development: All low energy neutral pcles.
269 7293 Longitudinal development: All low energy pcles.

270 7301 Unweighted longit. devel.: Low energy gamma rays.
271 7305 Unweighted longit. devel.: Low energy electrons.
272 7306 Unweighted longit. devel.: Low energy positrons.
273 7307 Unweighted longit. devel.: Low energy muons (+).
274 7308 Unweighted longit. devel.: Low energy muons (-).
275 7391 Unweighted longit. devel.: Other charged low egy. pcles.
276 7392 Unweighted longit. devel.: Other neutral low egy. pcles.
277 7405 Unweighted longit. devel.: Low energy e+ and e-
278 7407 Unweighted longit. devel.: Low energy mu+ and mu-
279 7491 Unweighted longit. devel.: All low energy charged pcles.
280 7492 Unweighted longit. devel.: All low energy neutral pcles.
281 7493 Unweighted longit. devel.: All low energy pcles.

282 7501 Longitudinal development: Energy of low egy. gamma rays.
283 7505 Longitudinal development: Energy of low egy. electrons.
284 7506 Longitudinal development: Energy of low egy. positrons.
285 7507 Longitudinal development: Energy of low egy. muons(+).
286 7508 Longitudinal development: Energy of low egy. muons(-).
287 7591 Longitudinal development: Egy. of other charged low egy. pcles.
288 7592 Longitudinal development: Egy. of other neutral low egy. pcles.
289 7705 Longitudinal development: Energy of low egy. e+ and e-
290 7707 Longitudinal development: Energy of low egy. mu+ and mu-
291 7791 Longitudinal development: Egy. of all low egy. charged pcles.
292 7792 Longitudinal development: Egy. of all low egy. neutral pcles.
293 7793 Longitudinal development: Egy. of all low energy pcles.

294 7801 Longitudinal development: Energy deposited by gamma rays.
295 7805 Longitudinal development: Energy deposited by electrons.
296 7806 Longitudinal development: Energy deposited by positrons.
297 7807 Longitudinal development: Energy deposited by muons (+).
298 7808 Longitudinal development: Energy deposited by muons (-).
299 7891 Longitudinal development: Egy. deposited by other charged pcles.
300 7892 Longitudinal development: Egy. deposited by other neutral pcles.
301 7905 Longitudinal development: Energy deposited by e+ and e-
302 7907 Longitudinal development: Energy deposited by mu+ and mu-
303 7991 Longitudinal development: Egy. deposited by all charged pcles.
304 7992 Longitudinal development: Egy. deposited by all neutral pcles.
305 7993 Longitudinal development: Energy deposited by all pcles.

Appendix D

The AIRES object library

The AIRES object library is a collection of modules that are useful in several applications, including
(but not limited to) special primary modules (see section 3.5), and output file processing, particu-
larly compressed files generated by the AIRES compressed i/o unit (CIO), and many other analysis
procedures.

There is an on-line reference for the AIRES library that can be accessed at the following link:

aires.fisica.unlp.edu.ar/doc/aireslibref

The information currently available on the on-line library reference covers all the user-callable library
modules and is permanently updated.

D.1 C/C++ interface

The modules of the AIRES object library are callable from a C/C++ program. In general the call-
ing statement is similar to the FORTRAN one, taking into account that all arguments are passed by
reference. That means that the actual arguments must be pointers to the corresponding data items.

This requirement is made evident when describing the different routines by placing an ampersand
(&) before the corresponding arguments. The experienced C programmer will understand, however,
that this character is not required in actual calling statements containing pointer variables as argu-
ments. The following example illustrates this point:

int *channel, *vrb, *irc;
int recnumber;
int crogotorec();
. . .
if (crogotorec(channel, &recnumber, vrb, irc)) { . . .

All the arguments of crogotorec are defined as pointers, except recnumber which is declared as an
integer variable. The & placed before this argument ensures that this variable be passed by reference
to the called routine.

140

APPENDIX D. THE AIRES OBJECT LIBRARY 141

In general, all the FORTRAN routines of the library can be directly called from a C program. In
a few cases it was necessary to write special C routines, which were named appending a “c” to the
original FORTRAN name, as in the case of opencrofile that must be called opencrofilec from a C
program (see page 196).

It is also worthwhile mentioning that some FORTRAN compilers do place an underscore (_) after
the names of the routines. In such cases this character must be manually appended to all the routines
used within the C program, excluding, of course, all the special C routines of the previous paragraph.

D.2 List of most frequently used library modules.

In this appendix we list the definitions of the most frequently used routines, alphabetically ordered.
At each case the FORTRAN as well as the C calling statements are placed.

142 APPENDIX D. THE AIRES OBJECT LIBRARY

atmodelinit

FORTRAN call atmodelinit(modidstr, modparstr, vrb,
modname, rc)

C atmodelinitc(&modidstr, &modparstr, &vrb,
&modname, &rc);

Initialization of the atmospheric model and specifying its parameters if necessary. This routine
is automatically called every time a compressed output file is opened to ensure by default that
the atmospheric model used in the analysis is the same as the one in effect during the simula-
tions that originated the compressed data file. For this reason it is very unlikely that a standard
analysis application need manual invocation of atmodelinit.

Arguments:

modidstr (Input, character string) Label to switch among atmospheric models. Maximum
length is 16 characters. Current available options are:

Linsley. Linsley’s standard model.

SouthPoleAvg. South pole average atmosphere.

LSouthPole. Linsley model for the South pole.

MalargueAvg. Malargue site annual average atmosphere.

GAMMA. J. C. Moreno’s model.

Isothermic. Isothermic atmosphere

Homogeneous. Constant density atmosphere.

modparstr (Input, character string) String containing model parameters.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error/informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that messages
will be printed even with successful operations. vrb = 2,3 means that only error messages
will be printed. vrb > 3 is similar to vrb = 3, but with the additional action of stopping the
program if a fatal error takes place.

modname (Output, character string) A name for the atmospheric model, to be typed some-
where. Maximum length: 42 characters.

rc (Output, integer) Return code. Zero means successful return.

APPENDIX D. THE AIRES OBJECT LIBRARY 143

atmosinit

FORTRAN call atmosinit(modlabel, atmosname)
C atmosinitc(&modlabel, &atmosname);

Initialization of the atmospheric parameters. Obsolete routine maintained just to guarantee
backwards compatibility of the AIRES system. Presently, this routine initializes the standard
Linsley atmosphere, regardless of the model label used.

Arguments:

modlabel (Input, integer) Label to switch among atmospheric models. No longer used.

atmosname (Output, character string) A name for the atmospheric model. Maximum length:
42 characters.

adstydepth,

adstymdepth FORTRAN dsty = adstydepth(Xvert, atlayer)

C dsty = adstydepth(&Xvert, &atlayer);
FORTRAN dsty = adstymdepth(Xvert, atlayer)
C dsty = adstymdepth(&Xvert, &atlayer);

Local density at a given depth. Multilayer atmospheric model. The atmospheric depth is mea-
sured in g/cm2, and the density in g/cm3 (adstydepth) or m−1g/cm2(adstydepth).

Arguments:

Xvert (Input, double precision) Vertical atmospheric depth (in g/cm2) of the corresponding
point. Must be positive.

atlayer (Output, integer) Atmospheric layer corresponding to the depth Xvert. This parame-
ter depends on the selected atmospheric model.

Returned value: (Double precision) The local density in g/cm3 (adstydepth) or m−1g/cm2(adstydepth).

144 APPENDIX D. THE AIRES OBJECT LIBRARY

cioclose

FORTRAN call cioclose
C cioclose;

Closing all the currently already opened CIO files.

cioclose1

FORTRAN call cioclose1(channel)
C cioclose1(&channel);

Closing an already opened CIO file.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

APPENDIX D. THE AIRES OBJECT LIBRARY 145

ciorinit

FORTRAN call ciorinit(inilevel, codsys, vrb, irc)
C ciorinit(&inilevel, &codsys, &vrb, &irc);

Initializing the AIRES compressed I/O system for reading data. This routine must be invoked
at the beginning of every program using the compressed I/O system routines.

Arguments:

inilevel (Input, integer) Initialization switch. If inilevel is zero or negative, all needed initial-
ization routines are called. If positive only the CIO system is initialized (The other rou-
tines must be called within the invoking program, before calling ciorinit: inilevel = 1
means complete cio initialization, while inilevel > 1 implies only particle coding initial-
ization. This last case allows changing the particle coding system at any moment during
a CIO processing session.

codsys (Input, integer) Particle coding system identification. This variable permits selecting
among several particle coding systems supported by AIRES (see table 4.7). The menu of
available systems is the following:

0 AIRES internal coding system.

1 AIRES internal coding for elementary particles and decimal nuclear notation (code =
A + 100 ∗ Z).

4 Particle Data Group coding system [38] extended with decimal nuclear notation.1

5 CORSIKA program particle coding system [36].

6 GEANT particle coding system [39].

8 SIBYLL particle coding system [10], extended with decimal nuclear notation.

9 MOCCA style particle coding system, extended with decimal nuclear notation.

– Any other value is equivalent to codsys = 1.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return. 1 means that an invalid particle
coding system was specified by codsys (in this case the default coding system is used).

1For nuclei the notation: code = A + 100000 ∗ Z, is used.

146 APPENDIX D. THE AIRES OBJECT LIBRARY

ciorshutdown

FORTRAN call ciorshutdown
C ciorshutdown;

Terminating (in an ordered fashion) a compressed file analysis session. This routine should be
invoked at the end of every CIO processing program.

clockrandom

FORTRAN r = clockrandom()
C r = clockrandom();

This function invokes the AIRES elementary random number generator and returns a pseudo-
random number uniformly distributed in the interval (0, 1), generated with the current clock and
CPU usage lectures. No initialization is needed before using this random number generator.

WARNING: This function is not to be used as a high quality random number generator.
This routine is intended only for some special applications like generating a single random
seed, for example.

Multiple calls may eventually return correlated numbers if there is no enough time between
invocations. Nevertheless, a sequence of different numbers passes direct 1d and 2d chi-square
tests, ensuring a minimum quality for the generated numbers.

Returned value: (Double precision) The uniform pseudo-random number.

APPENDIX D. THE AIRES OBJECT LIBRARY 147

crofieldindex

FORTRAN idx = crofieldindex(channel, rectype, fieldname,
vrb, datype, irc)

C idx = crofieldindex(&channel, &rectype,
&fieldname, &vrb, &datype,
&irc);

Returning the index corresponding to a given field within a compressed file record. It is conve-
nient to use this routine to set integer variables, and use them to manage the data returned by
getcrorecord, as explained in section 4.2.2 (page 86).

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

rectype (Input, integer) Record type (0 for default record type).

fieldname (Input, character string) First characters of field name (enough characters must be
provided to make an unambiguous specification).

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

datype (Output, integer) The data type that corresponds to the specified field: 1 for integer
data, 2 for date-time data, and 3 for real data.

irc (Output, integer) Return code. 0 means successful return.

Returned value: (Integer) The field index. Zero if there was an error.

148 APPENDIX D. THE AIRES OBJECT LIBRARY

crofileinfo

FORTRAN call crofileinfo(channel, ouflag, vrb, irc)
C crofileinfo(&channel, &ouflag, &vrb, &irc);

Printing information about the records of an already opened compressed file. This routine
retrieves information about the complete record structure of the corresponding file: How many
record types are defined, and for each record type the number of fields and a list of their names
and relative logical positions. The ordering in the list of fields is equal to the ordering of data in
the integer and real arrays returned by routine getcrorecord when reading a record of the same
type.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

ouflag (Integer, input) Logical output unit(s) selection flag. See routine croheaderinfo.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

APPENDIX D. THE AIRES OBJECT LIBRARY 149

crofileversion

FORTRAN ivers = crofileversion(channel)
C ivers = crofileversion(&channel);

Returning the AIRES version used to write an already opened compressed file.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

Returned value: (Integer) The corresponding version in integer format (for example the num-
ber 01040200 for version 1.4.2, 01040201 for version 1.4.2a, etc.). If the file is not opened
or if there is an error, then the return value is negative.

150 APPENDIX D. THE AIRES OBJECT LIBRARY

crogotorec

FORTRAN okflag = crogotorec(channel, recnumber, vrb,
irc)

C okflag = crogotorec(&channel, &recnumber, &vrb,
&irc);

Positioning the file after a given record. This routine, used in connection with crorecnumber,
allows emulating direct access to compressed files. Notice however that a completely random
access regime with very large files may eventually imply longer processing times.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

recnumber (Input, integer) The record number. A negative value is taken as zero.
If recnumber ≤ 0, the return code is always set to zero for successful operations (Notice
that in this case the file will be positioned at the beginning of the data records).

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. The meanings of the different values that can be returned
are as explained for routine getcrorecord. When the return code is a record type, it
corresponds to the record type of the last scanned record.

Returned value: (Logical) True if the positioning was successfully done. False otherwise.

APPENDIX D. THE AIRES OBJECT LIBRARY 151

croheaderinfo

FORTRAN call croheaderinfo(ouflag, vrb, irc)
C croheaderinfo(&ouflag, &vrb, &irc);

Printing a summary of the information contained in the header of the most recently opened
compressed file.

Arguments:

ouflag (Input, integer) Logical output unit(s) selection flag: 0 or negative means FORTRAN
unit 6 only, 1 means unit 7 only, 2 means both units 6 and 7, 3 means unit 8 only, ouflag >

8 means unit ouflag only. FORTRAN unit 6 corresponds to the standard output channel.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

152 APPENDIX D. THE AIRES OBJECT LIBRARY

croinputdata0

FORTRAN call croinputdata0(intdata, realdata, shprimcode,
shprimwt)

C croinputdata0(&intdata[1], &realdata[1],
&shprimcode[1], &shprimwt[1]);

Copying into arrays some header data items corresponding to the most recently opened com-
pressed file. Notice that some additional input parameters must be retrieved using routines
getinpreal, getinpint or getinpswitch (see pages 176–179).

Arguments:

intdata (Output, integer, array(*)) Integer data array. The calling program must provide
enough space for it. The following list describes the different data items:

1 Number of different primary particles.
2-4 Reserved for future use.

5 Primary energy distribution: 0 fixed energy; 1 varying energy.
6 Zenith angle distribution: 0, fixed angle; 1, sine distribution (equation (3.4)) ;

2, sine-cosine distribution (equation (3.6)).
7 Azimuth angle distribution: 0 (10), fixed angle (geographic azimuth); 1 (11),

varying angle (geographic azimuths).
8 Number of observing levels.
9 Atmospheric model label (See page 109).

10-14 Reserved for future use.
15 First shower number.

realdata (Output, double precision, array(*)) Real data array. The calling program must
provide enough space for it. The following list describes the different data items:

1 Minimum primary energy (GeV).
2 Maximum primary energy (GeV).
3 Exponent γ of energy distribution (equation (3.2)).
4 Minimum zenith angle (deg).
5 Maximum zenith angle (deg).
6 Minimum azimuth angle (deg).
7 Maximum azimuth angle (deg).
8 Thinning energy parameter.2

2The thinning energy parameter, tp, must be interpreted as follows: When positive, it gives the absolute thinning energy
in GeV. Otherwise it indicates a relative thinning specification, being Eth = |tp|Eprimary.

APPENDIX D. THE AIRES OBJECT LIBRARY 153

9 Injection altitude (m).3

10 Injection depth (g/cm2).
11 Ground altitude (m).
12 Ground depth (g/cm2).

13-14 Reserved for future use.
15 Altitude of first observing level (m).
16 Vertical depth of first observing level (g/cm2).
17 Altitude of last observing level (m).
18 Vertical depth of last observing level (g/cm2).
19 Distance between consecutive observing levels in g/cm2.
20 Site latitude (deg).
21 Site longitude (deg).
22 Geomagnetic field strength, F, (nT).
23 Local geomagnetic inclination, I, (deg).
24 Local geomagnetic declination, D, (deg).
25 Amplitude of random fluctuation of magnetic field4.

26-29 Reserved for future use.
30 Minimum lateral distance used for ground particle histograms (m).
31 Maximum lateral distance used for ground particle histograms (m).
32 Minimum energy used for histograms (GeV).
33 Maximum energy used for histograms (GeV).

34-35 Reserved for future use.
36 Minimum radial distance parameter for the most recently opened compressed

file (m).
37 Maximum radial distance parameter for the most recently opened compressed

file (m).

shprimcode (Output, integer, array(*)) For i from 1 to intdata(1), shprimcode(i) gives
the corresponding primary particle code. The coding system used is the one defined when
starting the cio system.

shprimwt (Output, double precision, array(*)) For i from 1 to intdata(1), shprimwt(i)
gives the corresponding primary particle weight. This weight is 1 in the single primary
case.

3Measured vertically, starting from the intersection point between the sea level and the line that goes form the Earth’s
center to the particle injection point, i.e., zv in figure 2.1.

4The magnetic fluctuation parameter, fp, must be interpreted as follows: When positive, it gives the absolute fluctuation
in nT. Otherwise it indicates a relative fluctuation specification, being ∆B = |fp| F.

154 APPENDIX D. THE AIRES OBJECT LIBRARY

crooldata

FORTRAN call crooldata(vrb, nobslev, olzv, oldepth,
irc)

C crooldata(&vrb, &nobslev, &olzv[1],
&oldepth[1], &irc);

Calculating observing levels information from data contained in a compressed data file header.

Since the header data is of global nature, the data used by this routine corresponds to the most
recently opened compressed file.

Arguments:

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

nobslev (Output, integer) The number of observing levels.

olzv (Output, double precision, array(*)) Altitudes (in m) of the corresponding observing
levels, from 1 to nobslev. The calling program must ensure that there is enough space for
this array.

oldepth (Output, double precision, array(*)) Vertical atmospheric depth (in g/cm2) of the
corresponding observing levels, from 1 to nobslev. The calling program must ensure that
there is enough space for this array.

irc (Output, integer) Return code. 0 means successful return.

APPENDIX D. THE AIRES OBJECT LIBRARY 155

croreccount

FORTRAN call croreccount(channel, vrb, nrtype, nrec, irc)
C croreccount(&channel, &vrb, &nrtype[0], &nrec,

&irc);

Counting the records of a compressed file starting from the first non-read record. Once the file
was scanned, the corresponding I/O channel is left in “end of file” status.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

nrtype (Output, integer) The highest record type defined for the file (record types range from
zero to nrtype).

nrec (Output, integer, array(0:nrtype)) For each record type, the number of records found.
No check is made to ensure that the length of the array is enough to store all the data
items.

irc (Output, integer) Return code. 0 means successful return.

156 APPENDIX D. THE AIRES OBJECT LIBRARY

crorecfind

FORTRAN okflag = crorecfind(channel, intype, vrb,
infield1, rectype)

C okflag = crorecfind(&channel, &intype, &vrb,
&infield1, &rectype);

Reading records until getting a specified record type. The compressed file associated with
channel is scanned until a record of type intype is found.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

intype (Input, integer) Record type to find.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

infield1 (Output, integer) If intype is zero, this variable contains the current value of the
first integer field of the last scanned record (which will be, in general, a particle code).
Otherwise it is set to zero.

rectype (Output, integer) Last scanned record type and return code. This argument contains
the same information as argument irc of routine getcrorecord. Notice that in the case of
successful return, rectype is equal to intype.

Returned value: (Logical) True if the last record was successfully read. False otherwise (End
of file or I/O error).

APPENDIX D. THE AIRES OBJECT LIBRARY 157

crorecinfo

FORTRAN call crorecninfo(channel, poskey, ouflag, vrb,
irc)

C crorecninfo(&channel, &poskey, &ouflag, &vrb,
&irc);

Printing information about the total number of records within an already opened compressed
file. The file is scanned starting after the last record already read to count the number of records
of each type that were written into it.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

poskey (Input, integer) Positioning key. This parameter allows to control the file positioning
after returning from this routine: If zero or negative the file remains positioned at the
“end of file” point, if 1 at the beginning of data, and if greater than 1, at the position found
before the call (This last option may eventually imply a significant increase in processing
time for very large files).

ouflag (Integer, input) Logical output unit(s) selection flag. See routine croheaderinfo.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

158 APPENDIX D. THE AIRES OBJECT LIBRARY

crorecnumber

FORTRAN recno = crorecnumber(channel, vrb, irc)
C recno = crorecnumber(&channel, &vrb, &irc);

This function returns the current record number corresponding to an already opened com-
pressed file.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

Returned value: (Integer) The record number. If the file is not ready (closed or end of file),
then −1 is returned.

APPENDIX D. THE AIRES OBJECT LIBRARY 159

crorecstrut

FORTRAN call crorecstruct(channel, nrtype, nintf, nrealf,
irc)

C crorecstruct(&channel, &nrtype, &nintf, &nrealf,
&irc);

Getting information about the records of an already opened compressed file.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

nrtype (Output, integer) The highest record type defined for the file (record types range from
zero to nrtype).

nintf (Output, integer, array(0:nrtype)) Number of integer fields contained at each record
type, for record types from zero to nrtype. No check is made to ensure that the length of
the array is enough to store all the data items.

nrealf (Output, integer, array(0:nrtype)) Number of real fields contained at each record
type, for record types from zero to nrtype. No check is made to ensure that the length of
the array is enough to store all the data items.

irc (Output, integer) Return code. 0 means successful return.

160 APPENDIX D. THE AIRES OBJECT LIBRARY

crorewind

FORTRAN call crorewind(channel, vrb, irc)
C crorewind(&channel, &vrb, &irc);

“Rewinding” an already opened compressed file. The file is positioned just before the first data
record. In other words, the file is system rewound and its header is re-scanned so the file pointer
remains located at the beginning of the record data stream.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

APPENDIX D. THE AIRES OBJECT LIBRARY 161

crospcode

FORTRAN isspecial = crospcode(pcode, splabel)
C isspecial = crospcode(&pcode, &splabel);

This logical function determines whether or not a given particle code corresponds to a special
primary particle.

Arguments:

pcode (Input, integer) The particle code to check.

splabel (Output, integer) Label associated to the special particle, or zero if the code does not
corresponds to a special particle. This variable is useful for further use with other library
routines, and should not be set by the calling program.

Returned value: (Logical) True if the input code corresponds to a special primary particle.
False otherwise.

162 APPENDIX D. THE AIRES OBJECT LIBRARY

crospmodinfo

FORTRAN call crospmodinfo(spname, spmodu, spml, sppars,
sppl, irc)

C crospmodinfoc(&spname, &spmodu, &spml, &sppars,
&sppl, &irc);

Retrieving information about the external module associated to a already defined special par-
ticle. When this routine is used to retrieve information stored in a compressed file, the data
returned correspond to the most recently opened compressed file.

Arguments:

intdata (Input, string) The name of the special particle.

spmodu (Output, string) The name of the associated module. The calling program must
provide enough space for this string.

spmodu (Output, integer) Length of string spmodu.

sppars (Output, string) String containing the parameters passed to the module. The calling
program must provide enough space for this string.

sppl (Output, integer) Length of string sppars.

APPENDIX D. THE AIRES OBJECT LIBRARY 163

crospnames

FORTRAN call crospnames(nspp, spname)
C crospnamesc(&nspp, &spname[1]);

Retrieving the names of the currently defined special particles. When this routine is used to re-
trieve information stored in a compressed file, the data returned correspond to the most recently
opened compressed file.

Arguments:

nspp (Input, integer) The number of special particles defined.

spname (Output, string, array(*)) Array containing the names of the defined particles. The
calling program must provide enough space for this array, and its elements (maximum 16
characters each).

164 APPENDIX D. THE AIRES OBJECT LIBRARY

crotaskid

FORTRAN call crotaskid(taskname, tasknamelen,
taskversion, startdate)

C crotaskidc(&taskname, &tasknamelen,
&taskversion, &startdate);

Getting task name and starting date for the task corresponding to the most recently opened
compressed file.

Arguments:

taskname (Output, string) The task name. The calling program must ensure there is enough
space to store the string.

tasknamelen (Output, integer) Length of task name.

tasknameversion (Output, integer) Task version.

startdate (Output, string) Task starting date in the format “dd/Mmm/yyyy hh:mm:ss” (20
characters).

APPENDIX D. THE AIRES OBJECT LIBRARY 165

dati

FORTRAN call dati(datistr)
C dati(&datistr);

Current date and time in the format dd/Mmm/yyyy hh:mm:ss

Arguments:

datistr (Output, character string) The string containing the current date and time.

166 APPENDIX D. THE AIRES OBJECT LIBRARY

depthfromz

FORTRAN Xvert = depthfromz(z, atlayer)
C Xvert = depthfromz(&z, &atlayer);

Atmospheric depth from vertical altitude. Multilayer atmospheric model..

Arguments:

z (Input, double precision) The vertical altitude in meters above sea level.

atlayer (Output, integer) Atmospheric layer corresponding to the depth Xvert. This parame-
ter depends on the selected atmospheric model.

Returned value: (Double precision) The vertical depth in g/cm2

APPENDIX D. THE AIRES OBJECT LIBRARY 167

dumpfileversion

FORTRAN ivers = dumpfileversion()
C ivers = dumpfileversion();

Returning the AIRES version associated with the dump file that was most recently read in (this
can be done using routine loadumpfile).

Returned value: (Integer) The corresponding version in integer format (for example the num-
ber 01040200 for version 1.4.2, 01040201 for version 1.4.2a, etc.). If there is an error,
then the return value is negative.

168 APPENDIX D. THE AIRES OBJECT LIBRARY

dumpfileversiono

FORTRAN ivers = dumpfileversiono()
C ivers = dumpfileversiono();

Returning the AIRES version used to write for the first time (the original version) the dump file
that was most recently read in (this can be done using routine loadumpfile).

Returned value: (Integer) The corresponding version in integer format (for example the num-
ber 01040200 for version 1.4.2, 01040201 for version 1.4.2a, etc.). If there is an error,
then the return value is negative.

APPENDIX D. THE AIRES OBJECT LIBRARY 169

dumpinputdata0

FORTRAN call dumpinputdata0(intdata, realdata)
C dumpinputdata0(&intdata[1], &realdata[1]);

Copying into arrays some global input data parameters stored in the dump file that was most
recently read in (this can be done using routine loadumpfile), that are not returned by croin-
putdata0.

Arguments:

intdata (Output, integer, array(*)) Integer data array. The calling program must provide
enough space for it. The following list describes the different data items:

1 Total number of showers.
2 Number of completed showers.
3 First shower number.

4-9 Reserved for future use.
10 Separate showers integer parameter.

realdata (Output, double precision, array(*)) Real data array. The calling program must
provide enough space for it. The following list describes the different data items:

1- Reserved for future use.

170 APPENDIX D. THE AIRES OBJECT LIBRARY

fitghf

FORTRAN call fitghf(bodata0, eodata0, depths,
nallch, weights, ws, minnmax,
nminratio, bodataeff, eodataeff,
nmax, xmax, x0, lambda, sqsum,
irc)

C fitghf(&bodata0, &eodata0, &depths[1],
&nallch[1], &weights[1], &ws,
&minnmax, &nminratio, &bodataeff,
&eodataeff, &nmax, &xmax, &x0,
&lambda, &sqsum, &irc);

Performing a 4-parameter nonlinear least squares fit to evaluate the parameters Nmax, Xmax,
X0 and λ of the Gaisser-Hillas function of equation (4.1). The fit is done using the Levenberg-
Mardquardt algorithm, as implemented in the public domain software library Netlib [16].

Arguments:

bodata0, eodata0 (Input, integer) Positive integer parameters defining the number of data
points to use in the fit.

depths (Input, double precision, array(eodata0)) Depths of the observing levels used in the
fit. Only the range (bodata0:eodata0) is used.

nallch (Input, double precision, array(eodata0)) Number of charged particles crossing the
different levels. Only the range (bodata0:eodata0) is used.

weights (Input, double precision, array(eodata0)) Positive weights to be assigned to each
one of the data points. Only the range (bodata0:eodata0) is used.

ws (Input, integer) If ws = 2, the weights are evaluated internally (proportionally to the
square root of the number of particles). If ws = 1 they must be provided as input data. If
ws = 2 the array weights is not used.

minnmax (Input, double precision) Threshold value for the maximum number of particles in
the input data set. The fit is not performed if the maximum number of particles is below
this parameter. If minnmax is negative, it is taken as zero.

nminratio (Input, double precision) Positive parameter used to determine the end of the data
set. Must be equal or greater than 5. Once the maximum of the data set is found. the
points located after this maximum up to the point where the number of charged particles
is less than the maximum divided nminratio. The remaining part of the data is not taken
into account in the fit. A similar analysis is performed with the points located before the
maximum. The recommended value is 100. A very large value will enforce inclusion of
all the data set.

APPENDIX D. THE AIRES OBJECT LIBRARY 171

bodataeff, eodataeff (Output, integer) The actual range of data points used in the fit.

nmax (Output, double precision) Estimated number of charged particles at the shower max-
imum (parameter Nmax). If no fit was possible, then the value coming from a direct
estimation from the input data is returned.

xmax (Output, double precision) Fitted position of the shower maximum, Xmax, in g/cm2.
If no fit was possible, then the value coming from a direct estimation from the input data
is returned.

x0 (Output, double precision) Fitted position of the point where the Gaisser-Hillas function
is zero (parameter X0), expressed in g/cm2.

lambda (Output, double precision) Fitted parameter λ, in g/cm2.

sqsum (Output, double precision) The resulting normalized sum of squares:

S = 1
N Nmax

N∑
i=1

[
N (I)(i)−N (GH)(i)

]2
N (GH)(i)

, (D.1)

where N is the number of data points used in the fit, and N (I) (N (GH)) represent the
set of particle numbers given as input (returned from equation 4.1 for the corresponding
depths).

irc (Output, integer) Return code. Zero means that the fit was successfully completed.

172 APPENDIX D. THE AIRES OBJECT LIBRARY

getcrorecord

FORTRAN okflag = getcrorecord(channel, intfields,
realfields, altrec, vrb,
irc)

C okflag = getcrorecord(&channel, &intfields[1],
&realfields[1], &altrec,
&vrb, &irc);

Reading a record from a compressed data file already opened. This routine can be used to read
records from every kind of compressed file: The routine automatically processes the records
without needing any user-level specification beyond file identity (parameter channel). The
logical returned value (here assigned to logical variable okflag) permits determining whether
or not the read operation was successful. The characteristics of the read record are informed
via the return code (irc), and the arrays intfields and realfields contain the corresponding data
items. Their contents depend on the file being processed and on the record type. The auxiliary
routines crofileinfo and crofieldindex are useful to process adequately the returned data at each
case.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

intfields (Output, integer, array(*)) Integer fields of the last read record. This includes the
non-scaled integer quantities and (in the last positions) the date-time specification(s), if
any. The calling program must provide enough space for this array (The minimum di-
mension is the maximum number of fields that can appear in a record plus 1). Positions
beyond the last integer fields are used as scratch working space. The meaning of each
data item within this array varies with the class of file processed and with the record type
(see also argument irc and routine crofileinfo).

realfields (Output, double precision, array(*)) Real fields of the record. The calling program
must provide enough space for this array. The meaning of each data item within this array
varies with the class of file processed and with the record type (see also argument irc and
routine crofileinfo).

altrec (Output, logical) True if the corresponding record type is positive (alternative record
type) False if the record type is zero (default record type).

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only

APPENDIX D. THE AIRES OBJECT LIBRARY 173

error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means that a record with zero (default) record type was
successfully read. i (i > 0) means that an alternative record of type i was successfully
read. −1 means that an end-of-file condition was got from the corresponding file. Any
other value indicates a reading error (irc equals the system return code plus 10000).

Returned value: (Logical) True if a record was successfully read. False otherwise (End of file
or I/O error).

174 APPENDIX D. THE AIRES OBJECT LIBRARY

getcrorectype

FORTRAN okflag = getcrorectype(channel, vrb, infield1,
rectype)

C okflag = getcrorectype(&channel, &vrb, &infield1,
&rectype);

Getting the record type of the record which is located next to the last read record of the com-
pressed file identified by argument channel.

The action of this routine consists in reading the first part of the record to obtain the record type,
and then skip the remaining part to position the file at the end of the corresponding record. The
use of this routine is recommended whenever only the record type is needed, since it is faster
than getcrorecord. When additional data of an already scanned record is required, routine
regetcrorecord can be used to re-scan the last processed one.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

infield1 (Output, integer) If rectype is zero, this variable contains the current value of the
first integer field of the record (which is, in general, a particle code). Otherwise it is set to
zero.

rectype (Output, integer) Record type and return code. This argument contains the same
information as argument irc of routine getcrorecord.

Returned value: (Logical) True if a record was successfully read. False otherwise (End of file
or I/O error).

APPENDIX D. THE AIRES OBJECT LIBRARY 175

getglobal

FORTRAN call getglobal(gvname, sdynsw, gvval, valen)
C getglobalc(&gvname, &sdynsw, &gvval, &valen);

Getting the current value of an already defined global varible. When this routine is used to re-
trieve information stored in a compressed file, the data returned correspond to the most recently
opened compressed file.

Arguments:

gvname (Input, string) Name of global variable.

sdynsw (Output, integer) Type of variable: 1 dynamic, 2 static, 0 if the variable is undefined.

gvval (Output, string) The string currently assigned to the variable. The calling program must
ensure enough space to store the string.

valen (Output, integer) Length of gvval. valen is negative for undefined variables.

176 APPENDIX D. THE AIRES OBJECT LIBRARY

getinpint

FORTRAN value = getinpint(dirname)
C value = getinpintc(&dirname);

Getting the current value for an integer (static) input parameter corresponding to the most
recently opened compressed file. This routine is used to get from the current file’s header those
integer input parameters not returned by routine croinputdata0 (see page 152).

Arguments:

dirname (Input, string) Name of the IDL directive associated with the parameter (can be
abbreviated accordingly with the rules described in appendix B).

Returned value: (integer) The current setting for the corresponding parameter. In case of
error the returned value is undefined.

APPENDIX D. THE AIRES OBJECT LIBRARY 177

getinpreal

FORTRAN value = getinpreal(dirname)
C value = getinprealc(&dirname);

Getting the current value for a real (static) input parameter corresponding to the most recently
opened compressed file. This routine is used to get from the current file’s header those real
input parameters not returned by routine croinputdata0 (see page 152).

Arguments:

dirname (Input, string) Name of the IDL directive associated with the parameter (can be
abbreviated accordingly with the rules described in appendix B).

Returned value: (double precision) The current setting for the corresponding parameter. In
case of error the returned value is undefined.

178 APPENDIX D. THE AIRES OBJECT LIBRARY

getinpstring

FORTRAN call getinpstring(dirname, value, slen)
C getinpstringc(&dirname, &value, &slen);

Getting the current value for an input (static) character string corresponding to the most re-
cently opened compressed file.

Arguments:

dirname (Input, string) Name of the IDL directive associated with the parameter (can be
abbreviated accordingly with the rules described in appendix B).

value (Output, string) The current parameter value. The calling program must ensure that
there is enough space to store the string.

slen (Output, integer) Length of the current parameter value. On error, slen is negative.

APPENDIX D. THE AIRES OBJECT LIBRARY 179

getinpswitch

FORTRAN value = getinpswitch(dirname)
C value = getinpswitchc(&dirname);

Getting the current value for an input (static) logical switch corresponding to the most recently
opened compressed file. This routine is used to get from the current file’s header those logical
input parameters not returned by routine croinputdata0 (see page 152).

Arguments:

dirname (Input, string) Name of the IDL directive associated with the parameter (can be
abbreviated accordingly with the rules described in appendix B).

Returned value: (Logical) The current setting for the corresponding parameter. In case of
error the returned value is undefined.

180 APPENDIX D. THE AIRES OBJECT LIBRARY

getlgtinit

FORTRAN call getlgtinit(channel, vrb, irc)
C getlgtinit(&channel, &vrb, &irc);

Initializing internal data needed to process records from compressed longitudinal particle track-
ing files by means of routine getlgtrecord and related ones. This routine should be called
immediately after opening the corresponding compressed file.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

APPENDIX D. THE AIRES OBJECT LIBRARY 181

getlgtrecord

FORTRAN okflag = getlgtrecord(channel, currol, updown,
intfields, realfields,
altrec, vrb, irc)

C okflag = getlgtrecord(&channel, &currol, &updown,
&intfields[1],
&realfields[1], &altrec,
&vrb, &irc);

Reading a record from a compressed longitudinal particle tracking file and returning the read
data in a “level per level” basis. This routine invokes getcrorecord to get a record from the
corresponding compressed file when it is necessary, and must be used jointly with getlgtinit.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

currol (Output, integer) Observing level crossed by the particle.

updown (Output, integer) Up-down indicator: 1 if the particle is going upwards, −1 other-
wise.

intfields (Output, integer, array(*)) Integer fields of the last read record. This includes the
non-scaled integer quantities and (in the last positions) the date-time specification(s), if
any. The calling program must provide enough space for this array (The minimum di-
mension is the maximum number of fields that can appear in a record plus 1). Positions
beyond the last integer fields are used as scratch working space. The meaning of each
data item within this array varies with the class of file processed and with the record type
(see also argument irc and routine crofileinfo).

realfields (Output, double precision, array(*)) Real fields of the record. The calling program
must provide enough space for this array. The meaning of each data item within this array
varies with the class of file processed and with the record type (see also argument irc and
routine crofileinfo).

altrec (Output, logical) True if the corresponding record type is positive (alternative record
type) False if the record type is zero (default record type).

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only

182 APPENDIX D. THE AIRES OBJECT LIBRARY

error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means that a record with zero (default) record type was
successfully read. i (i > 0) means that an alternative record of type i was successfully
read. −1 means that an end-of-file condition was got from the corresponding file. Any
other value indicates a reading error (irc equals the system return code plus 10000).

Returned value: (Logical) True if a record was successfully read. False otherwise (End of file
or I/O error).

APPENDIX D. THE AIRES OBJECT LIBRARY 183

ghfpars

FORTRAN call ghfpars(nmax, xmax, x0, lambda, vrb,
irc)

C ghfpars(&nmax, &xmax, &x0, &lambda, &vrb,
&irc);

Setting the internal quantities needed to work with the Gaisser-Hillas function (equation (4.1))
related routines.

Arguments:

nmax (Input, double precision) Parameter Nmax of equation 4.1.

xmax (Input, double precision) Parameter Xmax of equation 4.1.

x0 (Input, double precision) Parameter X0 of equation 4.1.

lambda (Input, double precision) Parameter λ of equation 4.1.

irc (Output, integer) Return code. 0 means successful return.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

184 APPENDIX D. THE AIRES OBJECT LIBRARY

ghfin

FORTRAN x = ghfin(np, prepost)
C x = ghfin(&np, &prepost);

Numerical evaluation of the inverse of the Gaisser-Hillas function (equation (4.1)) for a given
number of particles np. The four parameters Nmax, Xmax, X0, and λ must be specified previ-
ously by means of ghfpars.

Arguments:

np (Input, double precision) The number of particles. If np < 0 or np > Nmax, the result is
a large negative number.

prepost (Input, integer) Integer parameter labeling which of the two abscissas X has to be
returned: If prepost is less or equal to 0 then X < Xmax; otherwise X > Xmax. Notice
that the inverse of the Gaisser-Hillas function is bi-valuated.

Returned value: (Double precision) The value of the inverse Gaisser-Hillas function, ex-
pressed in g/cm2, that is, x such that np = ghfx(x).

APPENDIX D. THE AIRES OBJECT LIBRARY 185

ghfx

FORTRAN np = ghfx(x)
C np = ghfx(&x);

Evaluating the Gaisser-Hillas function (equation (4.1)) for a given depth x. The four parameters
Nmax, Xmax, X0, and λ must be specified previously by means of ghfpars.

Arguments:

x (Input, double precision) Atmospheric depth in g/cm2.

Returned value: (Double precision) The value of the function at the specified x.

186 APPENDIX D. THE AIRES OBJECT LIBRARY

grandom

FORTRAN r = grandom()
C r = grandom();

This function invokes the AIRES random number generator and returns a pseudo-random num-
ber with normal Gaussian distribution (zero mean and unit standard deviation). It is necessary
to initialize the random series calling raninit before using this function.

Returned value: (Double precision) The Gaussian pseudo-random number.

APPENDIX D. THE AIRES OBJECT LIBRARY 187

idlcheck

FORTRAN ikey = idlcheck(dirname)
C ikey = idlcheckc(&dirname);

Checking a string to see if it matches any of the IDL instructions currently defined, that is, the
ones corresponding to the most recently opened compressed file.

Arguments:

dirname (Input, string) Name of the IDL directive to be checked (can be abbreviated accord-
ingly with the rules described in appendix B).

Returned value: (Integer) If an error occurs, then the returned value will be negative. Other
return values are the following:

0 The string does not match any of the currently valid IDL instructions.

1 The string matches a directive belonging to the “basic” instruction set with no pa-
rameter(s) associated with it, for example Help.

2 The string matches a directive belonging to the “basic” instruction set. If there is a
parameter associated with the directive, then it can be obtained by means of routine
croinputdata0.

4 The directive corresponds to a real input parameter. The parameter can be retrieved
by means of function getinpreal.

6 The directive corresponds to an integer input parameter. The parameter can be re-
trieved by means of function getinpint.

8 The directive corresponds to a logical input parameter. The parameter can be re-
trieved by means of function getinpswitch.

10 The directive correspond to a string input parameter. The parameter can be retrieved
by means of routine getinpstring.

188 APPENDIX D. THE AIRES OBJECT LIBRARY

loadumpfile

FORTRAN call loadumpfile(wdir, taskname, vrb, irc)
C loadumpfilec(&wdir, &taskname, &vrb, &irc);

Reading the dump file associated with a given task, and copying into internal variables all the
information contained within it.

Arguments:

wdir (Input, character string) The name of the directory where the file is placed. It defaults
to the current directory when blank.

taskname (Input, character string) Task name, or dump file name.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return. 1 means successful return, but
the dump file was not created using the same AIRES version. 8 means that no dump file
(in the sequence taskname, taskname.adf, taskname.idf) exists. 12 means invalid file
name. Other return codes come from the adf or idf read routines.

APPENDIX D. THE AIRES OBJECT LIBRARY 189

nuclcode

FORTRAN ncode = nuclcode(z, n, irc)
C ncode = nuclcode(&z, &n, &irc);

This routine returns the AIRES code of a nucleus of Z protons and N neutrons, as defined in
page 18.

Arguments:

z (Input, integer) The number of protons in the nucleus.

n (Input, integer) The number of neutrons in the nucleus.

irc (Output, integer) Return code. 0 means that a valid pair of input parameters (Z, N) was
successfully processed. 3 means that the nucleus cannot be specified with the AIRES
system. 5 means that either Z or N are out of allowed ranges.

Returned value: (Integer) The nucleus code of equation (2.17).

190 APPENDIX D. THE AIRES OBJECT LIBRARY

nucldecode

FORTRAN call nucldecode(ncode, z, n, a)
C nucldecode(&ncode, &z, &n, &a);

This routine returns the charge, neutron and mass numbers corresponding to a given AIRES
nuclear code (see page 18).

Arguments:

ncode (Input, integer) The AIRES nuclear code of equation (2.17).

z (Output, integer) The number of protons in the nucleus.

n (Output, integer) The number of neutrons in the nucleus.

a (Output, integer) The mass number.

APPENDIX D. THE AIRES OBJECT LIBRARY 191

olcoord

FORTRAN call olcoord(nobslev, olzv, groundz, injz,
zenith, azimuth, xaxis, yaxis,
zaxis, tshift, mx, my, irc)

C olcoord(&nobslev, &olzv[1], &groundz,
&injz, &zenith, &azimuth,
&xaxis[1], &yaxis[1], &zaxis[1],
&tshift[1], &mx[1], &my[1], &irc);

This routine evaluates the coordinates of the intersections of observing level surfaces with the
shower axis, (x0i, y0i, z0i), i = 1, . . . , No, the corresponding time shifts, t0i, and the coeffi-
cients, mxi, myi, of the plane tangent to the surface at the intersection point:

z − z0i = mxi(x− x0i) + myi(y − y0i), i = 1, . . . , No. (D.2)

Arguments:

nobslev (Input, integer) The number of observing levels (No).

olzv (Input, double precision, array(nobslev)) Altitudes (in m) of the corresponding ob-
serving levels.

groundz (Input, double precision) Ground altitude (in m).

injz (Input, double precision) Injection altitude (in m).

zenith (Input, double precision) Shower zenith angle (deg).

azimuth (Input, double precision) Shower azimuth angle (deg).

xaxis, yaxis, zaxis (Output, double precision, array(nobslev)) Respectively x0i, y0i and
z0i, i = 1, . . . , No, coordinates (in m) of the intersection points between the observing
level surfaces and the shower axis.

tshift (Output, double precision, array(nobslev)) Observing levels time shifts, t0i, i =
1, . . . , No, (in ns), that is, the amount of time a particle moving at the speed of light needs
to go from the shower injection point to corresponding intersection point (x0i, y0i, z0i).

mx, my (Output, double precision, array(nobslev)) Coefficients of the planes which are
tangent to the observing levels and pass by the corresponding intersection points.

irc (Output, integer) Return code. Zero means successful return.

192 APPENDIX D. THE AIRES OBJECT LIBRARY

olcrossed

FORTRAN call olcrossed(olkey, updown, firstol, lastol)
C olcrossed(&olkey, &updown, &firstol,

&lastol);

This routine reconstructs the information contained in the crossed observing levels key, one of
the data items saved at each particle record in any longitudinal tracking compressed file.

This key encodes the first and last crossed observing observing levels and the direction of
motion. The encoding formula defined in equation (4.6), where L, if and il correspond to
olkey, firstol and lastol, respectively.

The routine returns all the variables of the right hand side of equation (4.6). The variable
associated to sud, updown is set in a slightly different way: It is be set to 1 when the particle
goes upwards, and to −1 otherwise.

Arguments:

olkey (Input, integer) Key with information about the crossed observing levels.

updown (Output, integer) Up-down indicator: 1 if the particle is going upwards, −1 other-
wise.

firstol (Output, integer) First observing level crossed (1 ≤ firstol ≤ 510).

lastol (Output, integer) Last observing level crossed (1 ≤ lastol ≤ 510).

APPENDIX D. THE AIRES OBJECT LIBRARY 193

olcrossedu

FORTRAN call olcrossedu(olkey, ux, uy, uz, firstol,
lastol)

C olcrossedu(&olkey, &ux, &uy, &uz, &firstol,
&lastol);

This routine is similar to olcrossed, but retrieves the information about the particle’s direction
of motion (up or down) in the form of an unitary vector.

Arguments:

olkey (Input, integer) Key with information about the crossed observing levels (See routine
olcrossed).

ux, uy (Input, double precision) x and y components of the unitary vector marking the parti-
cle’s direction of motion.

uz (Output, double precision) z component of the direction of motion. Positive means up-
wards motion.

firstol (Output, integer) First observing level crossed (1 ≤ firstol ≤ 510).

lastol (Output, integer) Last observing level crossed (1 ≤ lastol ≤ 510).

194 APPENDIX D. THE AIRES OBJECT LIBRARY

olsavemarked

FORTRAN ismarked = olsavemarked(obslev, vrb, irc)
C ismarked = olsavemarked(&obslev, &vrb, &irc);

Logical function returning “true” if an observing level is marked to be saved into longitudinal
files, “false” otherwise. An arbitrary subset of the defined observing levels can be selected for
inclusion into the longitudinal compressed files (see page 125); this function allows to deter-
mine if a given observing level was or not marked at the moment of performing the simulations
that generated the corresponding compressed file.

Arguments:

obslev (Input, integer) The number of observing level. If it is out of range the returned value
will always be “false”.

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. 0 means successful return.

Returned value: (Logical) “true” if the level is marked for file recording, “false” otherwise.

APPENDIX D. THE AIRES OBJECT LIBRARY 195

olv2slant

FORTRAN call olv2slant(nobslev, olxv, Xv0, zendis,
zen1, zen2, groundz, olxs)

C olv2slant(&nobslev, &olxv[1], &Xv0, &zendis,
&zen1, &zen2, &groundz, &olxs[1]);

Evaluating the slant depths of a set of observing levels. The slant depths are calculated along an
axis starting at altitude zground, for the “segment” that ends at vertical depth Xv0 (Xv0 = 0 is
the top of the atmosphere). The integer variable zendis allows to select among fixed, sine and
sine-cosine zenith angle distributions (see section 3.3.3).

Arguments:

nobslev (Input, integer) The number of observing levels (No).

olxv (Input, double precision, array(nobslev)) Vertical atmospheric depths (in g/cm2) of
the corresponding observing levels.

Xv0 (Input, double precision) Vertical atmospheric depth (in g/cm2) of the point marking the
end of the integration path. If Xv0 is zero, then the end of the integration path is the top
of the atmosphere.

zendis (Input, integer) Zenith angle distribution switch: 0 – fixed zenith angle, 1 – sine
distribution, 2 – sine-cosine distribution.

zen1, zen2 (Input, double precision) Minimum and maximum zenith angles (degrees). If
zendis is 0, then zen2 is not used and zen1 gives the corresponding fixed zenith angle.

groundz (Input, double precision) Ground altitude (in m).

olxs (Output, double precision, array(nobslev)) Slant atmospheric depths (in g/cm2) of
the corresponding observing levels.

196 APPENDIX D. THE AIRES OBJECT LIBRARY

opencrofile

FORTRAN call opencrofile(wdir, filename, header1,
logbase, vrb, channel, irc)

C opencrofilec(&wdir, &filename, &header1,
&logbase, &vrb, &channel, &irc);

Opening a CIO file for reading. This routine performs both the system open operation and file
header processing and checking.

Arguments:

wdir (Input, character string) The name of the directory where the file is placed. It defaults
to the current directory when blank.

filename (Input, character string) The name of the file to open.

header1 (Input, integer) Integer switch to select reading (greater than or equal to 0) or skip-
ping (less than 0) the first part of the header.

logbase (Input, integer) Variable to control the logarithmically scaled fields of the file records.
If logbase is less than 2, then the returned logarithms will be natural logarithms. Other-
wise base logbase will be returned (decimal ones if logbase = 10).

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

channel (Output, integer) File identification. This variable should not be changed by the
calling program. It must be used as a parameter of the reading and closing routines in
order to specify the corresponding file.

irc (Output, integer) Return code. 0 means successful return. 1 means successful return
obtained with a file that was written with a previous AIRES version. 10 means that the
file could be opened normally, but that it seems not to be a valid AIRES compressed
data file, or is a corrupted file; 12 invalid file header; 14 not enough size in some of
the internal arrays; 16 format incompatibilities. 20: too many compressed files already
opened. 300 < irc < 400 indicates a version incompatibility (when processing files
written with other AIRES version) or invalid version field (corrupt header). Any other
value indicates an opening / header-reading error (irc equals the system return code plus
10000).

APPENDIX D. THE AIRES OBJECT LIBRARY 197

raninit

FORTRAN call raninit(seed)
C raninit(&seed);

Initialization of the uniform pseudo-random number generator. This routine must be called
before the first invocation of grandom, urandom, or urandomt.

Arguments:

seed (Input, double precision) Seed to initialize the random series. If seed does not belong
to the interval (0, 1), then the seed actually used for initialization is internally generated
using the elementary generator clockrandom.

198 APPENDIX D. THE AIRES OBJECT LIBRARY

regetcrorecord

FORTRAN okflag = regetcrorecord(channel, intfields,
realfields, altrec, vrb,
irc)

C okflag = regetcrorecord(&channel, &intfields[1],
&realfields[1], &altrec,
&vrb, &irc);

Re-reading the current record. The input and output parameters of this routine are equivalent to
the respective arguments of routine getcrorecord. The difference between this routine and the
mentioned one is that regetcrorecord re-scans the last read record instead of advancing across
the input file. regetcrorecord is thought to be used jointly with getcrorectype, crorecfind and
other related procedures.

Arguments:

channel (Input, integer) Variable that uniquely identifies the I/O channel assigned to the
corresponding file. This variable must be already set by means of routine opencrofile.

intfields (Output, integer, array(*)) Integer fields of the record. For a complete description
of this argument see routine getcrorecord

realfields (Output, double precision, array(*)) Real fields of the record. For a complete
description of this argument see routine getcrorecord

altrec (Output, logical) Alternative/default record type label. See getcrorecord

vrb (Input, integer) Verbosity control. If vrb is zero or negative then no error or informative
messages are printed; error conditions are communicated to the calling program via the
return code. If vrb is positive error messages will be printed: vrb = 1 means that
messages will be printed even with successful operations. vrb = 2, 3 means that only
error messages will be printed. vrb > 3 is similar to vrb = 3, but with the additional
action of stopping the program if a fatal error takes place.

irc (Output, integer) Return code. For a complete description of this argument see routine
getcrorecord

Returned value: (Logical) True if a record was successfully re-read. False otherwise (EOF or
I/O error).

APPENDIX D. THE AIRES OBJECT LIBRARY 199

sp1stint

FORTRAN call sp1stint(csys, x1, y1, z1, irc)
C sp1stint(&csys, &x1, &y1, &z1, &irc);

Setting manually the position of the first interaction. When using special primary particles
processed by external modules which may inject more that a single primary, AIRES cannot
determine automatically the point where the first interaction takes place, and will take it as
equal to the injection point unless it is set explicitly using sp1stint. This routine should be
used only within modules designed to process special primaries, and following the guidelines
of section 3.5 (page 63).

Arguments:

csys (Input, integer) Parameter labeling the coordinate system used. csys = 0 selects the
AIRES coordinate system. csys = 1 selects the shower axis-injection point system de-
fined in section 3.5.

x1, y1, z1 (Input, double precision) Coordinates of the first interaction point with respect to
the chosen coordinate system (in meters).

irc (Output, integer) Return code. 0 means normal return.

200 APPENDIX D. THE AIRES OBJECT LIBRARY

spaddnull

FORTRAN call spaddnull(pener, pwt, irc)
C spaddnull(&pener, &pwt, &irc);

Adding a null (unphysical) particle to the list of primaries to be passed from the external module
to the main simulation program. This “particle” will not be propagated, but its energy will be
added to the unphysical particle counter included in the shower energy balance. This routine
should be used only within modules designed to process special primaries, and following the
guidelines of section 3.5 (page 63).

Arguments:

pener (Input, double precision) Energy (GeV).

pwt (Input, double precision) Null particle weight. Must be equal or greater than one.

irc (Output, integer) Return code. 0 means normal return.

APPENDIX D. THE AIRES OBJECT LIBRARY 201

spaddp0

FORTRAN call spaddp0(pcode, pener, csys, ux, uy, uz,
pwt, irc)

C spaddp0(&pcode, &pener, &csys, &ux, &uy,
&uz, &pwt, &irc);

Adding a primary particle to the list of primaries to be passed from the external module to the
main simulation program. This routine should be used only within modules designed to process
special primaries, and following the guidelines of section 3.5 (page 63).

Arguments:

pcode (Input, integer) Particle code, accordingly with the AIRES coding system described in
section 2.2.1 (page 17).

pener (Input, double precision) Kinetic energy (GeV).

csys (Input, integer) Parameter labeling the coordinate system used. csys = 0 selects the
AIRES coordinate system. csys = 1 selects the shower axis-injection point system de-
fined in section 3.5.

ux, uy, uz (Input, double precision) Direction of motion with respect to the chosen coordinate
system. The vector (ux, uy, uz) does not need to be normalized.

pwt (Input, double precision) Particle weight. Must be equal or greater than one.

irc (Output, integer) Return code; can be one of the following:

0 The particle was successfully added.

8 Negative kinetic energy.

9 Particle weight less than 1.

10 The direction of motion is a null vector.

11 Invalid coordinate system specification.

202 APPENDIX D. THE AIRES OBJECT LIBRARY

spaddpn

FORTRAN call spaddpn(n, pcode, pener, csys, ldu,
uxyz, pwt, irc)

C spaddpn(&n, &pcode, &pener, &csys, &ldu,
&uxyz[1][1], &pwt, &irc);

Adding a set of n primary particles to the list of primaries to be passed from the external module
to the main simulation program. This routine should be used only within modules designed to
process special primaries, and following the guidelines of section 3.5 (page 63).

Arguments:

n (Input, integer) The number of particles to add to the list.

pcode (Input, integer, array(n)) Particle codes, accordingly with the AIRES coding system
described in section 2.2.1 (page 17).

pener (Input, double precision, array(n)) Kinetic energies (GeV).

csys (Input, integer) Parameter labeling the coordinate system used. csys = 0 selects the
AIRES coordinate system. csys = 1 selects the shower axis-injection point system de-
fined in section 3.5.

ldu (Input, integer) Leading dimension of array uxyz; must be equal or greater than 3.

uxyz (Input, double precision, array(ldu, n)5) Directions of motion with respect to the chosen
coordinate system. The vectors (uxyz(1, i), uxyz(2, i), uxyz(3, i)), i = 1, . . . , n, do
not need to be normalized.

pwt (Input, double precision, array(n)) Particle weights. The weights must be equal or
greater than one.

irc (Output, integer) Return code. 0 means normal return.

5If uxyz is defined in a C environment, then its two dimensions should be swapped, i.e., double uxyz[n][ldu].

APPENDIX D. THE AIRES OBJECT LIBRARY 203

speiend

FORTRAN call speiend(retcode)
C speiend(&retcode);

Closing the interface for the special primary particle external process. This routine should be
used only within modules designed to process special primaries, and following the guidelines
of section 3.5 (page 63).

Arguments:

retcode (Input, integer) Return code to pass to the main simulation program. retcode = 0
means normal return. If retcode is not zero, a message will be printed and saved in the log
file (extension .lgf). 0 < |retcode| < 10, 10 ≤ |retcode| < 20, 20 ≤ |retcode| < 30,
and |retcode| ≥ 30 correspond, respectively, to information, warning, error and fatal
messages.

204 APPENDIX D. THE AIRES OBJECT LIBRARY

speigetmodname

FORTRAN call speigetmodname(mn, mnlen, mnfull, mnfullen)
C speigetmodnamec(&mn, &mnlen, &mnfull, &mnfullen);

Getting the name of the module invoked by the simulation program, that is, the one specified
in the definition of the corresponding special particle. This routine should be used only within
modules designed to process special primaries, and following the guidelines of section 3.5
(page 63).

Arguments:

mn (Output, string) Name of external module. The calling program must ensure there is
enough space to store the string.

mnlen (Output, integer) Length of external module name.

mnfull (Output, string) Full name of external module (Will be different of mn if the module
was placed within one of the directories specified with the InputPath directive. The
calling program must ensure there is enough space to store the string.

mnfullen (Output, integer) Length of full external module name.

APPENDIX D. THE AIRES OBJECT LIBRARY 205

speigetpars

FORTRAN call speigetpars(parstring, pstrlen)
C speigetparsc(&parstring, &pstrlen);

Getting the parameter string specified in the IDL instruction that defines the corresponding
special particle. This routine should be used only within modules designed to process special
primaries, and following the guidelines of section 3.5 (page 63).

Arguments:

parstring (Output, string) Parameter string. The calling program must ensure there is enough
space to store the string.

pstrlen (Output, integer) Length of parameter string. Zero if there are no parameters.

206 APPENDIX D. THE AIRES OBJECT LIBRARY

speimv

FORTRAN call speimv(mvnew, mvold)
C speimv(&mvnew, &mvold);

Setting and/or getting the external macro version. This routine should be used only within
modules designed to process special primaries, and following the guidelines of section 3.5
(page 63).

Arguments:

mvnew (Input, integer) Macro version number. Must be an integer in the range [1, 759375].
If mvnew is zero, then the macro version is not set.

mvold (Output, integer) Macro version number effective at the moment of invoking the rou-
tine. This variable will be set to zero in the first call to speimv.

APPENDIX D. THE AIRES OBJECT LIBRARY 207

spinjpoint

FORTRAN call spinjpoint(csys, x0, y0, z0, tsw, t0beta,
irc)

C spinjpoint(&csys, &x0, &y0, &z0, &tsw,
&t0beta, &irc);

Setting the current injection point for primary particles. This routine should be used only
within modules designed to process special primaries, and following the guidelines of section
3.5 (page 63).

Arguments:

csys (Input, integer) Parameter labeling the coordinate system used. csys = 0 selects the
AIRES coordinate system. csys = 1 selects the shower axis-injection point system de-
fined in section 3.5.

x0, y0, z0 (Input, double precision) Coordinates of the injection point with respect to the
chosen coordinate system (in meters).

tsw (Input, integer) Injection time switch. If tsw is zero then t0beta is an absolute injection
time; if tsw is 1, then the injection time is set as the time employed by a particle whose
speed is t0beta× c to go from the original injection point to the intersection point of the
shower axis with the plane orthogonal to that axis and containing the point (x0, y0, z0).

t0beta (Input, double precision) The meaning of this argument depends on the current value
of tsw. It can be the absolute injection time (ns) (time at original injection is taken as
zero); or the speed of a particle divided by c.

irc (Output, integer) Return code. 0 means normal return.

208 APPENDIX D. THE AIRES OBJECT LIBRARY

speistart

FORTRAN call speistart(showerno, primener, injpos,
xvinj, zground, xvground,
dgroundinj, uprim)

C speistart(&showerno, &primener, &injpos[1],
&xvinj, &zground, &xvground,
&dgroundinj, &uprim[1]);

Starting the interface for the special primary particle external process. This routine should be
used only within modules designed to process special primaries, and following the guidelines
of section 3.5 (page 63).

Arguments:

showerno (Output, integer) Current shower number.

primener (Output, double precision) Primary energy (GeV).

injpos (Output, double precision, array(3)) Position of the initial injection point with respect
to the AIRES coordinate system (in meters).

xvinj (Output, double precision) Vertical atmospheric depth of the injection point (in g/cm2).

zground (Output, double precision) Altitude og ground level (in m.a.s.l.).

xvground (Output, double precision) Vertical atmospheric depth of the ground surface (in
g/cm2).

dgroundinj (Output, double precision) Distance from the injection point to the intersection
between the shower axis and the ground surface (in meters).

uprim (Output, double precision, array(3)) Unitary vector in the direction of the straight line
going from the injection point towards the intersection between the shower axis and the
ground plane.

APPENDIX D. THE AIRES OBJECT LIBRARY 209

speitask

FORTRAN call speitask(taskn, tasklen, tver)
C speitaskc(&taskn, &tasklen, &tver);

Getting the current task name and version. This routine should be used only within modules
designed to process special primaries, and following the guidelines of section 3.5 (page 63).

Arguments:

taskn (Output, string) Task name. The calling program must ensure there is enough space to
store the string.

tasklen (Output, integer) Length of task name.

tver (Output, integer) Task name version.

210 APPENDIX D. THE AIRES OBJECT LIBRARY

spnshowers

FORTRAN call spnshowers(totsh, firstsh, lastsh)
C spnshowers(&totsh, &firstsh, &lastsh);

Getting the current values of the first and last shower, and total number of showers. This routine
should be used only within modules designed to process special primaries, and following the
guidelines of section 3.5 (page 63).

Arguments:

totsh (Output, integer) Total number of showers for the current task.

firstsh (Output, integer) Number of first shower.

lasttsh (Output, integer) Number of last shower.

APPENDIX D. THE AIRES OBJECT LIBRARY 211

sprimname

FORTRAN call sprimname(pname, pnamelen)
C sprimnamec(&pname, &pnamelen);

Getting the name of the special primary particle specified in the corresponding IDL instruction.
This routine should be used only within modules designed to process special primaries, and
following the guidelines of section 3.5 (page 63).

Arguments:

pname (Output, string) The name of the special particle. The calling program must ensure
there is enough space to store the string.

pnamelen (Output, integer) Length of particle name.

212 APPENDIX D. THE AIRES OBJECT LIBRARY

thisairesversion

FORTRAN iavers = thisairesversion()
C iavers = thisairesversion();

Returning the current version of the AIRES library.

Returned value: (Integer) The corresponding version in integer format (for example the num-
ber 01040200 for version 1.4.2, 01040201 for version 1.4.2a, etc.).

APPENDIX D. THE AIRES OBJECT LIBRARY 213

urandom

FORTRAN r = urandom()
C r = urandom();

This function invokes the AIRES random number generator and returns a pseudo-random num-
ber uniformly distributed in the interval [0, 1). It is necessary to initialize the random series
calling raninit before using this function.

Returned value: (Double precision) The uniform pseudo-random number.

urandomt

FORTRAN r = urandomt(threshold)
C r = urandomt(threshold);

This function invokes the AIRES random number generator and returns a pseudo-random num-
ber uniformly distributed in the interval [t, 1), where t is a specified threshold (0 ≤ t < 1). It
is necessary to initialize the random series calling raninit before using this function.

Arguments:

threshold (Input, double precision) The threshold t.

Returned value: (Double precision) The uniform pseudo-random number.

214 APPENDIX D. THE AIRES OBJECT LIBRARY

xslant

FORTRAN X = xslant(Xvert, Xv0, cozenith,
zground)

C X = xslant(&Xvert, &Xv0, &cozenith,
&zground);

Converting vertical atmospheric depths into slant atmospheric depths. This routine evaluates
the slanted path (in g/cm2) of equation (2.8), starting (ending) at the point whose vertical depth
is Xvert (Xv0). The inclination of the integration path is controlled by parameters cozenith
(cosine of the zenith angle) and zground (altitude, in meters, of the intersection between the
oblique axis and the z-axis), as illustrated in figure 2.1 (page 9).

Arguments:

Xvert (Input, double precision) Vertical atmospheric depth (in g/cm2) of the point marking
the beginning of the integration path. Must be positive.

Xv0 (Input, double precision) Vertical atmospheric depth (in g/cm2) of the point marking the
end of the integration path. If Xv0 is zero, then the end of the integration path is the top
of the atmosphere. If Xv0 corresponds to a point located below the point corresponding
to Xvert (Xv0 > Xvert), then the returned slant depth will be negative.

cozenith (Input, double precision) Cosine of the zenith angle Θ (see figure 2.1) corresponding
to the integration line. Must be in the range (0, 1].

zground (Input, double precision) z-coordinate (in meters) of the intersection point between
the oblique axis and the z-axis, which is normally coincident with the “ground altitude”.

Returned value: (Double precision) The slant atmospheric depth in g/cm2; or zero in case of
error or invalid argument.

APPENDIX D. THE AIRES OBJECT LIBRARY 215

zfromdepth

FORTRAN z = zfromdepth(Xvert, atlayer)
C z = zfromdepth(&Xvert, &atlayer);

Vertical altitude from atmospheric depth. Multilayer atmospheric model..

Arguments:

Xvert (Input, double precision) Vertical atmospheric depth (in g/cm2) of the corresponding
point. Must be positive.

atlayer (Output, integer) Atmospheric layer corresponding to the depth Xvert. This parame-
ter depends on the selected atmospheric model.

Returned value: (Double precision) The vertical altitude in m.a.s.l.

References

[1] A. M. Hillas, Nucl. Phys. B (Proc. Suppl.), 52B, 29 (1997); A. M. Hillas, Proc. 19th ICRC (La
Jolla), 1, 155 (1985).

[2] S. J. Sciutto, AIRES: A minimum document, Auger technical note GAP-97-029 (1997).

[3] M. T. Dova and S. J. Sciutto, Air Shower Simulations: Comparison Between AIRES and
MOCCA, Auger technical note GAP-97-053 (1997).

[4] A. M. Hillas, Proc. of the Paris Workshop on Cascade simulations, J. Linsley and A. M. Hillas
(eds.), p 39 (1981).

[5] M. Kobal, A. Filipčič and D. Zavrtanik, Auger technical notes GAP-98-001 and GAP-98-058
(1998).

[6] T. Pierog, Iu. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C, 92, 034906 (2015).

[7] S. S. Ostapchenko, Phys. Rev. D, 83, 014018 (2011).

[8] S. Ostapchenko, Nucl. Phys. B (Proc. Suppl.), 151, 143 (2006).

[9] N. N. Kalmykov and S. S. Ostapchenko, Yad. Fiz., 56, 105 (1993); Phys. At. Nucl., 56, (3) 346
(1993); N. N. Kalmykov, S. S. Ostapchenko and A. I. Pavlov, Bull. Russ. Acad. Sci. (Physics),
58, 1966 (1994).

[10] Eun-Joo Ahn et al., Phys. Rev. D, 80, 094003 (2009); F. Riehn et al., Proc. 35th Int. Cosmic Ray
Conf. (Bexco, Busan, Korea), , cont. 301 (2017).

[11] Eun-Joo Ahn et al., Phys. Rev. D, 80, 094003 (2009); F. Riehn et al., Proc. 35th Int. Cosmic Ray
Conf. (The Hague, The Netherlands), , cont. 1313 (2015).

[12] R. Engel, T. K. Gaisser, T. Stanev, Proc. 26th ICRC (Utah), 1, 415 (1999).

[13] R. T. Fletcher, T. K. Gaisser, P. Lipari and T. Stanev, Phys. Rev. D, 50, 5710 (1994); J. Engel, T.
K. Gaisser, P. Lipari and T. Stanev, Phys. Rev. D, 46, 5013 (1992).

[14] H. Moritz, J. of Geodesy, 74, 128 (2000).

216

REFERENCES 217

[15] The data, software and documentation related with the International Geomagnetic Reference
Field are distributed by the National Geophysical Data Center, Boulder (CO), USA, and can be
obtained electronically at the following Web address: www.ngdc.noaa.gov/IAGA/vmod.

[16] NETLIB is a public collection of mathematical software, papers, and databases, that can be
accessed through Internet, at the World Wide Web address www.netlib.org.

[17] CERN Program library Long Writeup Q121 (1995).

[18] S. J. Sciutto, AIRES users guide and reference manual , version 1.4.2, Auger technical note
GAP-98-032 (1998).

[19] National Aerospace Administration (NASA), National Oceanic and Atmospheric Administra-
tion (NOAA) and US Air Force, US standard atmosphere 1976, NASA technical report NASA-
TM-X-74335, NOAA technical report NOAA-S/T-76-1562 (1976).

[20] R. C. Weast (editor), CRC Handbook of Chemistry and Physics, 61st edition, pp F206 – F213,
CRC Press, Boca Raton (FL, USA) (1981).

[21] B. Rossi, High-energy particles, Prentice-Hall, New Jersey (USA) (1956).

[22] We were not able to find official references related with Linsley’s standard atmosphere model.
References [1, 36] contain information about parameterization data.

[23] A. Cillis and S. J. Sciutto, J. Phys. G, 26, 309-321 (2000).

[24] A. Cillis and S. J. Sciutto, Phys. Rev. D, 64, 013010 (2001).

[25] A. B. Migdal, Phys. Rev., 103, 1811 (1956).

[26] A. Cillis, C. A. Garc«ıa Canal, H. Fanchiotti and S. J. Sciutto, Phys. Rev. D, 59, 113012 (1999).

[27] D. Heck, private communication.

[28] T. K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, Cambridge
(1992).

[29] S. J. Sciutto, in preparation.

[30] L. D. Landau and I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR, 92, 535, 735 (1953).

[31] S. Klein, preprint hep-ph/9820442 (1998).

[32] I. Vattulainen, T. Ala-Nissila, K. Kankaala, Phys. Rev. Lett. 73, 2513 (1994).

[33] S. J. Sciutto, in preparation.

218 REFERENCES

[34] V. S. Berezinskiı̆, et. al., V. L. Ginzburg (editor), Astrophysics of cosmic rays, North-Holland
(1990).

[35] T. K. Gaisser and A. M Hillas, Proc. 15th ICRC (Plovdiv), 8, 353 (1977).

[36] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw, Forschungszentrum Karlsruhe,
Report FZKA 6019 (1998).

[37] P. Billoir, private communication.

[38] Particle Data Group, M. Tanabashi et al. (Particle Data Group), Phys. Rev. D, 98, 030001 (2018).

[39] CERN Program library Long Writeup W5013 (1994).

[40] Particle Data Group, D. E. Groom et. al., The European Physical Journal, C15, 1 (2000); web-
site: www-pdg.lbl.gov.

[41] J. C. Moreno, S. J. Sciutto, Eur. Phys. J. Plus, 128, 104 (2013).

[42] J. Alvarez-Muñiz, W. R. Carvalho, A. Romero-Wolf, M. Tueros, E. Zas, Phys. Rev. D, 86,
123007 (2012).

Index

Page numbers in boldface represent the definition
or the main source of information about whatever
is being indexed.

ADF or adf, see internal dump file, portable format
adstydepth,, see AIRES object library.
AIRES

installation, 8, 101
table of features, 4

AIRES coordinate system, 9, 17, 53, 66, 68, 123,
199, 201, 202, 207, 208

AIRES extensions, vi
AIRES file directories, 50

export directory, 50, 50, 114
global directory, 50, 99, 114
output directory, 50, 114
scratch directory, 50, 50, 114
working directory, 50, 50, 51, 95, 96, 108,

118
AIRES IDF to ADF converting program, 3, 99,

100
AIRES object library, 2, 67, 75, 86, 105, 140

adstydepth,, 143
atmodelinit, 142
atmosinit, 143
C/C++ interface, 86, 140
cioclose, 92, 144
cioclose1, 92, 144
ciorinit, 86, 91, 145
ciorshutdown, 92, 146
clockrandom, 146, 197
crofieldindex, 91, 147
crofileinfo, 89, 148
crofileversion, 89, 149
crogotorec, 92, 140, 150
croheaderinfo, 89, 151
croinputdata0, 89, 152, 169, 187
crooldata, 92, 154
croreccount, 92, 155
crorecfind, 92, 156
crorecinfo, 92, 157

crorecnumber, 92, 158
crorecstrut, 89, 159
crorewind, 92, 160
crospcode, 77, 92, 161
crospmodinfo, 92, 162
crospnames, 163
crotaskid, 89, 164
dati, 165
depthfromz, 166
dumpfileversion, 89, 167
dumpfileversiono, 168
dumpinputdata0, 89, 169
fitghf, 92, 170
getcrorecord, 89–91, 172, 181
getcrorectype, 92, 174
getglobal, 89, 175
getinpint, 89, 176, 187
getinpreal, 89, 177, 187
getinpstring, 89, 178, 187
getinpswitch, 89, 179, 187
getlgtinit, 90, 180, 181
getlgtrecord, 90, 180, 181
ghfin, 92, 184
ghfpars, 92, 183, 184, 185
ghfx, 92, 185
grandom, 92, 186, 197
idlcheck, 89, 187
loadumpfile, 89, 167–169, 188
nuclcode, 68, 189
nucldecode, 190
olcoord, 92, 191
olcrossed, 92, 192
olcrossedu, 92, 193
olsavemarked, 92, 194
olv2slant, 92, 195
on-line reference, 140
opencrofile, 88, 91, 141, 196
raninit, 92, 186, 197, 213
regetcrorecord, 92, 174, 198
sp1stint, 68, 199

219

220 INDEX

spaddnull, 68, 200
spaddp0, 64–66, 68, 201
spaddpn, 68, 202
speiend, 64, 65, 67, 68, 203
speigetmodname, 67, 204
speigetpars, 67, 205
speimv, 68, 206
speistart, 64, 65, 67, 68, 208
speitask, 67, 209
spinjpoint, 68, 207
spnshowers, 67, 210
sprimname, 67, 211
thisairesversion, 89, 212
urandom, 92, 197, 213
urandomt, 65, 67, 92, 197, 213
xslant, 92, 214
zfromdepth, 215

AIRES particle codes, 17, 19, 65, 86, 88, 145,
201, 202

AIRES Runner System, v, 5, 37, 93
commands
airescheck, 93
airesexport, 98
aireskill, 95
aireslaunch, 94, 96
airesstatus, 94
airesstop, 95
airestask, 94, 97
airesuntask, 95
mkairesspool, 97
rmairesspool, 97

AIRES site library, 37, 56, 107, 117, 129
AIRES summary program, vi, 2, 3, 34, 45, 69, 71,

99, 106
AiresIDF2ADF, see AIRES IDF to ADF

converting program
.airesrc initialization file, 93, 94, 98, 104
AiresSry, see AIRES summary program
alternative primaries, see special primary particles
arrival time distributions, 59
ARS o ars, see AIRES Runner System
ASCII dump file, see internal dump file, portable

format
atmodelinit, see AIRES object library.
atmosinit, see AIRES object library.
atmosphere, 54
atmospheric depth, 12

slant, 14, 15, 92, 195, 214
vertical, 12, 13, 24, 79, 81

atmospheric model, 8, 10, 13, 23, 48, 53, 109,
142, 143, 152, 166, 215

backwards compatibility, 69, 75
bremsstrahlung, v, 3, 4, 18, 21, 111

cioclose, see AIRES object library.
cioclose1, see AIRES object library.
ciorinit, see AIRES object library.
ciorshutdown, see AIRES object library.
clockrandom, see AIRES object library.
comment characters in output files, changing, 72,

73, 110
compressed output files, vi, 2, 3, 6, 43, 45, 50, 68,

75, 105, 125–127, 140, 142
dynamically added fields, 129

Compton effect, v, 3, 4, 18
computer requirements, 32, 33
converting IDF files to ADF portable format, 99
CORSIKA, 88

particle codes, 88, 145
cosmic neutrinos, 63
crofieldindex, see AIRES object library.
crofileinfo, see AIRES object library.
crofileversion, see AIRES object library.
crogotorec, see AIRES object library.
croheaderinfo, see AIRES object library.
croinputdata0, see AIRES object library.
crooldata, see AIRES object library.
croreccount, see AIRES object library.
crorecfind, see AIRES object library.
crorecinfo, see AIRES object library.
crorecnumber, see AIRES object library.
crorecstrut, see AIRES object library.
crorewind, see AIRES object library.
crospcode, see AIRES object library.
crospmodinfo, see AIRES object library.
crospnames, see AIRES object library.
crossed observing levels key, 84, 92, 192
crotaskid, see AIRES object library.

dati, see AIRES object library.
depth of first interaction, 68, 70, 71, 76, 137, 199
depthfromz, see AIRES object library.
dielectric suppression, v, 3, 4, 18, 62, 111, 119
differences between AIRES 19.04.10 and AIRES

19.04.08, vii
dumpfileversion, see AIRES object library.
dumpfileversiono, see AIRES object library.
dumpinputdata0, see AIRES object library.

INDEX 221

Earth’s curvature, 4, 10, 14–16, 71
Earth’s magnetic field, see geomagnetic field
EHSA, see extended Hillas splitting algorithm
energy distributions, 2, 4, 24, 25, 59, 72, 112, 135
EPOS, v, 3, 4, 20, 60, 61, 94, 103, 115
error messages, 35
exotic primaries, see special primary particles
exported data files, 44, 45, 50, 71, 98, 110, 113,

132
for single showers, 113

extended Hillas splitting algorithm, 3, 4, 61
External input data file, 102
external packages, v, 3, 6, 17, 20, 34, 56, 57, 60,

61, 71, 111, 113–116, 120, 170

fault tolerant processing, 6, 48, 93
file directories, see AIRES file directories
first shower number, 76, 114
fitghf, see AIRES object library.

Gaisser-Hillas function, 71, 73, 92, 171, 183, 185
fitting, 170
inverse of, 184

GEANT
particle codes, 88, 145

geographic azimuth, 53, 123, 152
geomagnetic field, 2, 4, 8, 9, 17, 56, 111, 116, 153

fluctuations, 58, 116
getcrorecord, see AIRES object library.
getcrorectype, see AIRES object library.
getglobal, see AIRES object library.
getinpint, see AIRES object library.
getinpreal, see AIRES object library.
getinpstring, see AIRES object library.
getinpswitch, see AIRES object library.
getlgtinit, see AIRES object library.
getlgtrecord, see AIRES object library.
ghfin, see AIRES object library.
ghfpars, see AIRES object library.
ghfx, see AIRES object library.
global variables, 39, 41, 89, 111, 118, 127, 175
grandom, see AIRES object library.

hadronic cross sections, 4, 21, 22, 61, 119, 120
low energy, 120

hadronic models, 3, 20, 34, 60, 61, 113–115, 120
here-document, 55, 107, 108, 128
Hillas, A. M., 2, 20, 25, 61

IDF or idf, see internal dump file

IDL, see Input Directive Language.
idlcheck, see AIRES object library.
IGRF, see International Geomagnetic Reference

Field
Input Directive Language, v, vii, 2, 6, 34, 35

directives
?, 37, 117
#, 39, 41, 72, 107
&, 39, 107
AddAtmosModel, 55, 56, 107, 110
AddSite, 56, 107, 129
AddSpecialParticle, 63, 64, 67,

108, 123
ADFile, 42, 44, 99, 108
AirAvgZ/A, 62, 108
AirRadLength, 62, 109
AirZeff, 62, 109
Atmosphere, 54–56, 109
Brackets, 110
CheckOnly, 36, 37, 93, 110
CommentCharacter, 72, 73, 110
Date, 56, 111
DelGlobal, 39, 111
DielectricSuppression, 62, 111
DumpFile, 111
Echo, 111, 126
ElectronCutEnergy, 42, 112
ElectronRoughCut, 62, 112
ELimsTables, 59, 112
EMtoHadronWFRatio, 59, 112
End, 35, 42, 99, 106, 112
Exit, 37, 113
ExportPerShower, 72, 113
ExportTables, 42, 44, 72, 73, 99, 113,

132
ExtCollModel, 61, 113
ExtNucNucMFP, 62, 114
FileDirectory, 50, 114
FirstShowerNumber, 68, 76, 114
ForceInit, 50, 114
ForceLowEAnnihilation, 62, 115
ForceLowEDecays, 62, 115
ForceModel, 130
ForceModelName, 61, 115
GammaCutEnergy, 42, 116
GammaRoughCut, 62, 116
GeomagneticField, 57, 116
GroundAltitude, 41, 43, 53, 117
GroundDepth (synonym of

222 INDEX

GroundAltitude), 117
Help, 37, 117
Import, 39, 41, 117
ImportShell, 117
InjectionAltitude, 53, 118
InjectionDepth (synonym of
InjectionAltitude), 118

Input, 36, 37, 51, 106, 118, 118
InputListing, 48, 62, 118
InputPath, 51, 118, 118, 204
LaTeX, 70, 119
LPMEffect, 62, 119
MaxCpuTimePerRun, 48, 119
MesonCutEnergy, 42, 119
MFPHadronic, 61, 119
MFPThreshold, 61, 120
MinExtCollEnergy, 61, 120
MinExtNucCollEnergy, 61, 120
MuonBremsstrahlung, 62, 120
MuonCutEnergy, 42, 121
NuclCollisions, 62, 121
NuclCutEnergy, 42, 121
ObservingLevels, 41, 53, 59, 86, 121
OutputListing, 70, 122
PerShowerData, 59, 72, 113, 122
PhotoNuclear, 62, 122
PrimaryAzimAngle, 43, 53, 123
PrimaryEnergy, 35, 39, 41, 52, 64, 123
PrimaryParticle, 35, 41, 51, 64, 123
PrimaryZenAngle, 41, 43, 52, 124
PrintTables, 42, 44, 71, 124, 132
Prompt, 37, 124
PropagatePrimary, 62, 124
RandomSeed, 60, 125
RecordObsLevels, 86, 125
RecordSpecPrimaries, 125
Remark, 39, 41, 111, 126
ResamplingRatio, 81, 84, 126, 126
RLimsFile, vii, 81, 84, 126
RLimsTables, 59, 126
RunsPerProcess, 48, 127
SaveInFile, 43, 82, 84, 86, 127
SaveNotInFile, 43, 82, 84, 127
SeparateShowers, 127
SetGlobal, 39, 41, 127
SetTimeAtInjection, 62, 128
SetTopAtInjection, 128
Shell, 128
ShowersPerRun, 48, 128

Site, 56, 107, 116, 129
Skip, 39, 41, 129
SpecialParticLog, 68, 129
SPMaxFieldsToAdd, 129
StackInformation, 70, 129
StopOnError, 115, 130
Summary, 70, 72, 99, 130
TableIndex, 71, 124, 130
TaskName, 35, 41, 72, 99, 130
ThinningEnergy, 41, 58, 130
ThinningWFactor, 58, 131
TotalShowers, 35, 41, 49, 67, 131
Trace, 36, 37, 93, 131
TSSFile, 73, 131
x, 37, 113

dynamic/static directives, 35, 45, 49, 106
format, 35, 106
hidden directives, 37, 48, 62, 106
physical units, 37, 38
reference manual, 106

input file checking, 35, 93
installing AIRES, 8, 101
internal dump file, vi, 6, 34, 45, 49, 50, 59, 60, 69,

95, 98, 125, 188
accessing, 89
portable format, 44, 45, 50, 69, 99, 108
processing with AIRES summary program,

69
International Geomagnetic Reference Field, 4, 17,

56, 111, 116

knock-on electrons, v, 3, 4, 18, 21

lateral distributions, 2, 4, 24, 25, 28, 59, 126, 134
LATEX format for summary files, 70, 119
loadumpfile, see AIRES object library.
log file, 45, 50, 68, 129
longitudinal development, 2, 4, 24, 25, 27, 54, 59,

69, 70, 121, 132
created particles, 137
deposited energy, 139
energy of created particles, 138
in energy, 42, 133
low energy particles, 138

low energy particles, 62
annihilation, 115
decay, 115

LPM effect, v, 3, 4, 18, 23, 62, 111, 119

magnetic azimuth, 53, 123

INDEX 223

mean free path, 21, 61
hadronic, 22, 61, 119
nucleus-nucleus collisions, 22, 114, 119

mixed composition, 51, 64
MOCCA, 1, 88

particle codes, 88, 145
multiple primaries, see special primary particles
muon bremsstrahlung, v, 3, 4, 18, 62, 120
muonic pair production, 4, 62, 120

Netlib, 3, 71, 170
Nmax, 70, 137
nuclcode, see AIRES object library.
nucldecode, see AIRES object library.
nucleus-nucleus collisions, 4, 61, 114, 120

olcoord, see AIRES object library.
olcrossed, see AIRES object library.
olcrossedu, see AIRES object library.
olsavemarked, see AIRES object library.
olv2slant, see AIRES object library.
online help, 37
opencrofile, see AIRES object library.
output data tables, 44, 59, 98, 132

pair production, v, 3, 4, 18, 116
particle codes, 17, 87, 88, 145, 153
photoelectric effect, v, 3, 4, 18
photonuclear reactions, v, 3, 4, 18, 20, 122
portable dump file, see internal dump file, portable

format
positron annihilation, v, 3, 4, 18, 21, 23, 112
pre-showers, 63
primary energy spectrum, 52, 123
process, definition, 34

QGSJET, v, 3, 4, 20, 22, 60, 61, 103, 115, 120

random number generator, 24, 59, 67, 92, 125,
186, 197, 213

elementary without seed, 59, 146
raninit, see AIRES object library.
recompiling simulation programs, 104
regetcrorecord, see AIRES object library.
release notes, vii
resampling algorithm, 78, 82, 126
rewinding compressed files, 92, 160
run, definition, 34

shower axis-injection point coordinate system, 66,
199, 201, 202, 207

shower maximum, 24, 70, 83
SIBYLL, v, 3, 4, 20, 22, 60, 61, 88, 103, 115, 120

particle codes, 88, 145
single shower tables, 59, 72, 99
slant atmospheric depth, see atmospheric depth,

slant
sp1stint, see AIRES object library.
spaddnull, see AIRES object library.
spaddp0, see AIRES object library.
spaddpn, see AIRES object library.
special primary particles, v, 2–4, 8, 51, 52, 63, 65,

77, 80, 83, 92, 108, 117, 123, 125,
127–129, 140, 161–163, 199–211

logging, 68
speiend, see AIRES object library.
speigetmodname, see AIRES object library.
speigetpars, see AIRES object library.
speimv, see AIRES object library.
speistart, see AIRES object library.
speitask, see AIRES object library.
spinjpoint, see AIRES object library.
splitting algorithm, 20, 78

extended, see extended Hillas splitting
algorithm

spnshowers, see AIRES object library.
sprimname, see AIRES object library.
statistical weight factor, 27, 30–32, 58, 112, 131
summary file, 6, 45, 50, 69, 70
system and environment tables, 132

task summary script file, 6, 45, 69, 73, 74, 131
task, definition, 34
tasks, processes and runs, 34, 48, 95
thinning, v, 2, 4, 8, 25, 27–30, 41, 58, 76, 112,

130, 131, 152
AIRES extended algorithm, 26, 31–33, 58
Hillas algorithm, 25, 27–29, 31, 33

thisairesversion, see AIRES object library.
threshold energies, 20, 23, 42, 43, 61, 62, 78, 112,

116, 119–121
time distributions, 24, 136
TSS or tss, see task summary script file

unweighted distributions, 25, 133–135, 137
urandom, see AIRES object library.
urandomt, see AIRES object library.
US standard atmosphere, 11, 12, 15, 54, 109

vertical atmospheric depth, see atmospheric depth,
vertical

224 INDEX

Xmax, 24, 70, 122, 137
xslant, see AIRES object library.

zfromdepth, see AIRES object library.
ZHAireS, vi, 103

NOTES 225

226 NOTES

NOTES 227

228 NOTES

